Effectiveness of reverse body bias for leakage control in scaled dual Vt CMOS ICs

Examines the effectiveness of opportunistic use of reverse body bias (RBB) to reduce leakage power during active operation, burn-in, and standby in 0.18 /spl mu/m single-V/sub t/ and 0.13 /spl mu/m dual-V/sub t/ logic process technologies. Investigates its dependencies on channel length, target V/sub t/, temperature and technology generation. Shows that RBB becomes less effective for leakage reduction at shorter channel lengths and lower V/sub t/ at both high and room temperatures, especially when target intrinsic leakage currents are high. RBB effectiveness also diminishes with technology scaling primarily because of worsening short-channel effects (SCE), particularly when target V/sub t/ values are low. A model is given that relates different transistor leakage components to full-chip leakage current, and is validated through test-chip measurements across a range of RBB values.

[1]  Dimitri Antoniadis,et al.  Impact of using adaptive body bias to compensate die-to-die Vt variation on within-die Vt variation , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[2]  Kaushik Roy,et al.  Technology scaling behavior of optimum reverse body bias for standby leakage power reduction in CMOS IC's , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).