A Primer for Using Transgenic Insecticidal Cotton in Developing Countries

Abstract Many developing countries face the decision of whether to approve the testing and commercial use of insecticidal transgenic cotton and the task of developing adequate regulations for its use. In this review, we outline concepts and provide information to assist farmers, regulators and scientists in making decisions concerning this technology. We address seven critical topics: 1) molecular and breeding techniques used for the development of transgenic cotton cultivars, 2) properties of transgenic cotton cultivars and their efficacy against major insect pests, 3) agronomic performance of transgenic cotton in developing countries, 4) factors affecting transgene expression, 5) impact of gene flow between transgenic and non-transgenic cotton, 6) non-target effects of transgenic cotton, and 7) management of pest resistance to transgenic cotton.

[1]  A. Shelton,et al.  Different Cross-Resistance Patterns in the Diamondback Moth (Lepidoptera: Plutellidae) Resistant to Bacillus thuringiensis Toxin Cry1C , 2001, Journal of Economic Entomology.

[2]  Don R. Reynolds,et al.  A landscape‐scale study of bumble bee foraging range and constancy, using harmonic radar , 1999 .

[3]  Clive A. Edwards,et al.  The influence of pesticide applications on Helicoverpa armigera Hübner and sucking pests in transgenic Bt cotton and non-transgenic cotton in China , 2005 .

[4]  C. Ellers-kirk,et al.  Effects of Insect Population Size on Evolution of Resistance to Transgenic Crops , 2004 .

[5]  David Zilberman,et al.  Adoption of Bt Cotton and Impact Variability: Insights from India , 2006 .

[6]  J. Kirsten,et al.  The Adoption and Impact of Agricultural Biotechnology in South Africa , 2003 .

[7]  D. O'reilly,et al.  Insect resistance management for Syngenta's VipCot transgenic cotton. , 2007, Journal of invertebrate pathology.

[8]  Xinjun Xu,et al.  Disruption of a Cadherin Gene Associated with Resistance to Cry1Ac δ-Endotoxin of Bacillus thuringiensis in Helicoverpa armigera , 2005, Applied and Environmental Microbiology.

[9]  Z. Huang,et al.  Effects of dietary transgenic Bt corn pollen on larvae of Apis mellifera and Galleria mellonella , 2003 .

[10]  F. Liu,et al.  Recent progress in cotton biotechnology and genetic engineering in China. , 2000 .

[11]  D. Boulter,et al.  Potential for exploiting plant genes to genetically engineer insect resistance, exemplified by the cowpea trypsin inhibitor gene , 1989 .

[12]  J. Adamczyk,et al.  Field Efficacy and Seasonal Expression Profiles for Terminal Leaves of Single and Double Bacillus thuringiensis Toxin Cotton Genotypes , 2001, Journal of economic entomology.

[13]  D. Crowder,et al.  Insect resistance to Bt crops: evidence versus theory , 2008, Nature Biotechnology.

[14]  A. Hearn,et al.  Cotton cropping systems , 1992 .

[15]  S. Floresa,et al.  Transgenic Bt plants decompose less in soil than non-Bt plants , 2005 .

[16]  J. R. Bradley,et al.  Estimated Frequency of Nonrecessive Bt Resistance Genes in Bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Eastern North Carolina , 2003, Journal of economic entomology.

[17]  F. S. Walters,et al.  The Mode of Action of the Bacillus thuringiensis Vegetative Insecticidal Protein Vip3A Differs from That of Cry1Ab δ-Endotoxin , 2003, Applied and Environmental Microbiology.

[18]  P. Westra,et al.  Adventitious Presence of Herbicide Resistant Wheat in Certified and Farm-Saved Seed Lots , 2007 .

[19]  A. Shelton,et al.  Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  D. Llewellyn,et al.  Field performance and seasonal changes in the efficacy against Helicoverpa armigera (Hübner) of transgenic cotton expressing the insecticidal protein vip3A , 2007 .

[21]  B. Tabashnik,et al.  Resistance Management for Sustainable Use of Bacillus thuringiensis Crops in Integrated Pest Management , 2004 .

[22]  S. Downes,et al.  Monitoring and adaptive resistance management in Australia for Bt-cotton: current status and future challenges. , 2007, Journal of invertebrate pathology.

[23]  Carol L. Pilcher,et al.  Biodiversity and Community Structure of Epedaphic and Euedaphic Springtails (Collembola) in Transgenic Rootworm Bt Corn , 2005 .

[24]  Nicholas Kalaitzandonakes,et al.  Adoption of Cotton Biotechnology in the United States: Implications for Impact Assessment , 2003 .

[25]  R. Hillocks Is there a role for Bt cotton in IPM for smallholders in Africa? , 2005 .

[26]  J. Coats,et al.  Subacute Effects of Cry1Ab Bt Corn Litter on the Earthworm Eisenia fetida and the Springtail Folsomia candida , 2006 .

[27]  F. Bigler,et al.  Assessing the risks of insect resistant transgenic plants on entomophagous arthropods Bt-maize expressing Cry1Ab as a case study , 2003, BioControl.

[28]  A. Ives,et al.  MONITORING AND ADAPTIVE RESISTANCE MANAGEMENT , 2002 .

[29]  R. Fuchs,et al.  Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. , 2000, Regulatory toxicology and pharmacology : RTP.

[30]  J. R. Bradley,et al.  Comparative Production of Helicoverpa zea (Lepidoptera: Noctuidae) from Transgenic Cotton Expressing Either One or Two Bacillus thuringiensis Proteins with and without Insecticide Oversprays , 2004, Journal of economic entomology.

[31]  R. T. Roush,et al.  Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? , 1998 .

[32]  Jikun Huang,et al.  'Bt cotton' benefits, costs and impacts in China , 2003 .

[33]  B. M. Khadi,et al.  Photosynthesis and plant growth response of transgenic Bt cotton (Gossypium hirsutum L.) hybrids under field condition , 2007, Photosynthetica.

[34]  John M. Walker,et al.  Molecular Biology and Biotechnology , 1988 .

[35]  Graham P. Head,et al.  No Detection of Cry1Ac Protein in Soil After Multiple Years of Transgenic Bt Cotton (Bollgard) Use , 2002 .

[36]  David A. Andow,et al.  F2 screen for rare resistance alleles , 1998 .

[37]  Stephen Morse,et al.  Environmental impact of genetically modified cotton in South Africa , 2006 .

[38]  T. D. L. Torre,et al.  Mortality and Development Effects of Transgenic Cotton on Pink Bollworm Larvae , 2001 .

[39]  D. Onstad Modeling larval survival and movement to evaluate seed mixtures of transgenic corn for control of western corn rootworm (Coleoptera: Chrysomelidae). , 2006, Journal of economic entomology.

[40]  G. Ye,et al.  Effect after introducing Bacillus thuringiensis gene on nitrogen metabolism in cotton , 2004 .

[41]  J. Baffes The cotton problem , 2005 .

[42]  B. Raymond,et al.  Host plant and population determine the fitness costs of resistance to Bacillus thuringiensis , 2007, Biology Letters.

[43]  J. Thies,et al.  Effect of Cry3Bb transgenic corn and tefluthrin on the soil microbial community: biomass, activity, and diversity. , 2004, Journal of environmental quality.

[44]  Gary P. Fitt,et al.  The Ecology of Heliothis Species in Relation to Agroecosystems , 1989 .

[45]  Matin Qaim,et al.  Bt Cotton in India: Field Trial Results and Economic Projections , 2003 .

[46]  K. Zhu,et al.  Characterization of cDNAs encoding three trypsin-like proteinases and mRNA quantitative analysis in Bt-resistant and -susceptible strains of Ostrinia nubilalis. , 2005, Insect biochemistry and molecular biology.

[47]  F. Gould Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. , 1998, Annual review of entomology.

[48]  R. Luttrell,et al.  Susceptibilities of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) Populations to Cry1Ac Insecticidal Protein , 2006, Journal of economic entomology.

[49]  L. Wan,et al.  Variation in Susceptibility of Noctuid (Lepidoptera) Larvae Attacking Cotton and Soybean to Purified Endotoxin Proteins and Commercial Formulations of Bacillus thuringiensis , 1999 .

[50]  M. Whitehouse,et al.  A Comparison of Arthropod Communities in Transgenic Bt and Conventional Cotton in Australia , 2005 .

[51]  Peter Kareiva,et al.  A Meta-Analysis of Effects of Bt Cotton and Maize on Nontarget Invertebrates , 2007, Science.

[52]  Sharlene R. Matten,et al.  Current Resistance Management Requirements for Bt Cotton in the United States , 2003 .

[53]  R J Mahon,et al.  Resistance toBacillus thuringiensis Toxin Cry2Ab in a Strain ofHelicoverpa armigera (Lepidoptera: Noctuidae) in Australia , 2007, Journal of economic entomology.

[54]  George G. Khachatourians,et al.  Liabilities and economics of transgenic crops , 2002, Nature Biotechnology.

[55]  Robert L. Nichols,et al.  ECONOMICS AND MARKETING Transgenic Cotton Cultivars: An Economic Comparison in Arkansas , 2003 .

[56]  Bhavani Shankar,et al.  Bt cotton in KwaZulu Natal: technological triumph but institutional failure , 2005 .

[57]  S. Heuberger,et al.  Effects of Refuge Contamination by Transgenes on Bt Resistance in Pink Bollworm (Lepidoptera: Gelechiidae) , 2008, Journal of economic entomology.

[58]  J. Adamczyk,et al.  Impact of Bt Cottons Expressing One or Two Insecticidal Proteins of Bacillus thuringiensis Berliner on Growth and Survival of Noctuid (Lepidoptera) Larvae , 2001, Journal of economic entomology.

[59]  C. Parker,et al.  Interplant movement of Heliothis virescens (Lepidoptera: Noctuidae) larvae in pure and mixed plantings of cotton with and without expression of the Cry1Ac delta-endotoxin protein of Bacillus thuringiensis Berliner. , 1999, Journal of economic entomology.

[60]  U. Langer,et al.  Molecular composition of leaves and stems of genetically modified Bt and near-isogenic non-Bt maize--characterization of lignin patterns. , 2005, Journal of environmental quality.

[61]  J. Re,et al.  Field performance of transgenic cottons expressing one or two Bacillus thuringiensis endotoxins against bollworm, Helicoverpa zea (Boddie) , 2003 .

[62]  H. M. Flint,et al.  Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm (Lepidoptera : Gelechiidae) and other insects , 1992 .

[63]  Timothy J. Dennehy,et al.  Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Mike Mendelsohn,et al.  Are Bt crops safe? , 2003, Nature Biotechnology.

[65]  Timothy J. Dennehy,et al.  Arthropod Abundance and Diversity in Bt and Non-Bt Cotton Fields , 2004 .

[66]  W. Pettigrew,et al.  Nitrogen Fertility and Planting Date Effects on Lint Yield and Cry1Ac (Bt) Endotoxin Production , 2006 .

[67]  R. Akhurst,et al.  Effects of host plant species on fitness costs of Bt resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) , 2007 .

[68]  F. Gould,et al.  Delaying evolution of insect resistance to transgenic crops by decreasing dominance and heritability , 2004, Journal of evolutionary biology.

[69]  S. Morin,et al.  DNA Screening Reveals Pink Bollworm Resistance to Bt Cotton Remains Rare After a Decade of Exposure , 2006, Journal of economic entomology.

[70]  R. Sequeira,et al.  Abundance of Helicoverpa (Lepidoptera: Noctuidae) pupae under cotton and other crops in central Queensland: Implications for resistance management , 2001 .

[71]  B. Singh,et al.  Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India. , 2007, Journal of invertebrate pathology.

[72]  R. Hutmacher,et al.  Methods to Enable Coexistence of Diverse Cotton Production Systems , 2006 .

[73]  B. Tabashnik,et al.  Evolution of Resistance to Bacillus Thuringiensis , 1994 .

[74]  G. Baker,et al.  Production of Helicoverpa spp. (Lepidoptera, Noctuidae) from different refuge crops to accompany transgenic cotton plantings in eastern Australia , 2008 .

[75]  R. Arora,et al.  Biological activity of soybean trypsin inhibitor and plant lectins against cotton bollworm/legume pod borer, Helicoverpa armigera , 2005 .

[76]  S. Heuberger,et al.  Long-term evaluation of compliance with refuge requirements for Bt cotton. , 2005, Pest management science.

[77]  J. Free Insect pollination of crops , 1970 .

[78]  Matin Qaim,et al.  Genetically Modified Crops, Corporate Pricing Strategies, and Farmers' Adoption: The Case of Bt Cotton in Argentina , 2003 .

[79]  Steven E. Naranjo,et al.  Long-Term Assessment of the Effects of Transgenic Bt Cotton on the Function of the Natural Enemy Community , 2005 .

[80]  B. Tabashnik,et al.  Effect of Entomopathogenic Nematodes on the Fitness Cost of Resistance to Bt Toxin Cry1Ac in Pink Bollworm (Lepidoptera: Gelechiidae) , 2006 .

[81]  D. Andow,et al.  An In-Field Screen for Early Detection and Monitoring of Insect Resistance to Bacillus thuringiensis in Transgenic Crops , 2000, Journal of economic entomology.

[82]  David Zilberman,et al.  Yield Effects of Genetically Modified Crops in Developing Countries , 2003, Science.

[83]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[84]  Steven E. Naranjo,et al.  Long-Term Assessment of the Effects of Transgenic Bt Cotton on the Abundance of Nontarget Arthropod Natural Enemies , 2005 .

[85]  B. Tabashnik,et al.  Effects of transgenic Bt cotton on insecticide use and abundance of two generalist predators , 2007 .

[86]  G. Fitt Deployment and Impact of Transgenic Bt Cotton in Australia , 2003 .

[87]  S. Morin,et al.  Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[88]  J. Gore,et al.  Behavior of Bollworm (Lepidoptera: Noctuidae) Larvae on Genetically Engineered Cotton , 2002, Journal of economic entomology.

[89]  J. Adamczyk,et al.  Status of insecticide resistance in tobacco budworm and bollworm in Louisiana during 1999. , 2000 .

[90]  K. Olsen,et al.  Plant-Toxin Interactions in Transgenic Bt Cotton and their Effect on Mortality of Helicoverpa armigera (Lepidoptera: Noctuidae) , 2000, Journal of economic entomology.

[91]  J. Trumble,et al.  Plant allocation to defensive compounds: interactions between elevated CO(2) and nitrogen in transgenic cotton plants. , 2002, Journal of experimental botany.

[92]  B. Hau,et al.  Boll distribution patterns in Bt and non-Bt cotton cultivars. I. Study on commercial irrigated farming systems in South Africa , 2006 .

[93]  R. Akhurst,et al.  Fitness of Cry1A-Resistant and -Susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on Transgenic Cotton with Reduced Levels of Cry1Ac , 2005, Journal of economic entomology.

[94]  L. Gianessi,et al.  Trends in Pesticide Use Since the Introduction of Genetically Engineered Crops , 2003 .

[95]  Sharlene Matten,et al.  The Role of Microbial Bt Products in U.S. Crop Protection , 2003 .

[96]  M. Billot,et al.  Indigenous plants and weeds on the Makhathini Flats as refuge hosts to maintain bollworm population susceptibility to transgenic cotton (Bollgard) , 2003 .

[97]  Nicholas Kalaitzandonakes,et al.  The Economic and Environmental Impacts of Agbiotech , 2003 .

[98]  R. Luttrell,et al.  Cotton Pest Management: Part 1. A Worldwide Perspective , 1994 .

[99]  N. Ellstrand,et al.  When transgenes wander, should we worry? , 2001, Plant physiology.

[100]  Kent J. Bradford,et al.  Pollen-Mediated Gene Flow in California Cotton Depends on Pollinator Activity , 2005 .

[101]  R. Bennett,et al.  Bt-cotton boosts the gross margin of small-scale cotton producers in South Africa , 2005 .

[102]  D. Andow,et al.  Sugarcane Borer (Lepidoptera: Crambidae) Resistance to Transgenic Bacillus thuringiensis Maize , 2007, Journal of economic entomology.

[103]  G. Ye,et al.  The effect of high temperature on the insecticidal properties of Bt Cotton , 2005 .

[104]  K. Wu,et al.  The evolution of cotton pest management practices in China. , 2005, Annual review of entomology.

[105]  Juliet D. Tang,et al.  Field tests on managing resistance to Bt-engineered plants , 2000, Nature Biotechnology.

[106]  Xiaoyan Yin,et al.  Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods , 2005, Euphytica.

[107]  B. Tabashnik,et al.  Fitness costs of insect resistance to Bacillus thuringiensis. , 2009, Annual review of entomology.

[108]  C. Ellers-kirk,et al.  Effects of Cotton Cultivar on Fitness Costs Associated with Resistance of Pink Bollworm (Lepidoptera: Gelechiidae) to Bt Cotton , 2005, Journal of economic entomology.

[109]  D. Bosch,et al.  Development of Bacillus thuringiensis CryIC Resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae) , 1995, Applied and environmental microbiology.

[110]  D. Altman,et al.  Expression and Segregation of Genes Encoding CryIA Insecticidal Proteins in Cotton , 1998 .

[111]  T. A. Armstrong,et al.  Insect Resistant Cotton Plants , 1990, Bio/Technology.

[112]  C. N. Stewart,et al.  Larvicidal Cry proteins from Bacillus thuringiensis are released in root exudates of transgenic B. thuringiensis corn, potato, and rice but not of B. thuringiensis canola, cotton, and tobacco. , 2004, Plant physiology and biochemistry : PPB.

[113]  Kongming Wu,et al.  Seasonal expression profiles of insecticidal protein and control efficacy against Helicoverpa armigera for Bt cotton in the Yangtze River valley of China. , 2005, Journal of economic entomology.

[114]  F. Gould,et al.  Impact of Small Fitness Costs on Pest Adaptation to Crop Varieties with Multiple Toxins: A Heuristic Model , 2006 .

[115]  J. Adamczyk,et al.  Correlating Differences in Larval Survival and Development of Bollworm (Lepidoptera: Noctuidae) and Fall Armyworm (Lepidoptera: Noctuidae) to Differential Expression of Cry1A(c) δ-Endotoxin in Various Plant Parts Among Commercial Cultivars of Transgenic Bacillus thuringiensis Cotton , 2001, Journal of economic entomology.

[116]  Richard L. Hellmich,et al.  Impact of Bt corn pollen on monarch butterfly populations: A risk assessment , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[117]  D. Stanley,et al.  Bollgard Cotton and Resistance of Tobacco Budworm (Lepidoptera: Noctuidae) to Conventional Insecticides in Southern Tamaulipas, Mexico , 2005, Journal of economic entomology.

[118]  B. Tabashnik Delaying insect adaptation to transgenic plants: seed mixtures and refugia reconsidered , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[119]  P. Singh,et al.  Development of a hybrid delta-endotoxin and its expression in tobacco and cotton for control of a polyphagous pest Spodoptera litura , 2004, Transgenic Research.

[120]  L. Masson,et al.  One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[121]  Timothy J. Dennehy,et al.  SOURCES, SINKS, AND THE ZONE OF INFLUENCE OF REFUGES FOR MANAGING INSECT RESISTANCE TO Bt CROPS , 2004 .

[122]  W C Bridges,et al.  Field and laboratory evaluations of transgenic cottons expressing one or two Bacillus thuringiensis var. kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests. , 2003, Journal of economic entomology.

[123]  R. Bennett,et al.  Reductions in insecticide use from adoption of Bt cotton in South Africa: impacts on economic performance and toxic load to the environment , 2004, The Journal of Agricultural Science.

[124]  J. Adamczyk BREEDING AND GENETICS Genetic Basis for Variability of Cry1Ac Expression Among Commercial Transgenic Bacillus thuringiensis (Bt) Cotton Cultivars in the United States , 2004 .

[125]  S. Turnipseed,et al.  Field and Laboratory Evaluations of Transgenic Cottons Expressing One or Two Bacillus thuringiensis var. kurstaki Berliner Proteins for Management of Noctuid (Lepidoptera) Pests , 2003 .

[126]  Ryan A Hill,et al.  Conceptualizing risk assessment methodology for genetically modified organisms. , 2005, Environmental biosafety research.

[127]  Wei Tang,et al.  Development of hybrid Bt cotton in China - A successful integration of transgenic technology and conventional techniques , 2004 .

[128]  John J. Adamczyk,et al.  LABORATORY AND FIELD PERFORMANCE OF COTTON CONTAINING CRY1AC, CRY1F, AND BOTH CRY1AC AND CRY1F (WIDESTRIKE®) AGAINST BEET ARMYWORM AND FALL ARMYWORM LARVAE (LEPIDOPTERA: NOCTUIDAE) , 2004 .

[129]  Kongming Wu,et al.  Efficacy of Transgenic Cotton Containing a cry1Ac Gene from Bacillus thuringiensis Against Helicoverpa armigera (Lepidoptera: Noctuidae) in Northern China , 2003 .

[130]  G. Poppy GM crops: environmental risks and non-target effects. , 2000, Trends in plant science.

[131]  B. Tabashnik,et al.  Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[132]  A. Shelton,et al.  Economic, ecological, food safety, and social consequences of the deployment of bt transgenic plants. , 2002, Annual review of entomology.

[133]  Kongming Wu,et al.  Influences of Bacillus thuringiensis Berliner Cotton Planting on Population Dynamics of the Cotton Aphid, Aphis gossypii Glover, in Northern China , 2003 .

[134]  Clive James,et al.  Global status of commercialized biotech/GM crops: 2006. , 2006 .

[135]  S. M. Greenberg,et al.  Effects of Bt cotton expressing Cry1Ac and Cry2Ab and non-Bt cotton on behavior, survival and development of Trichoplusia ni (Lepidoptera: Noctuidae) , 2006 .

[136]  Zhen-huai Li,et al.  Effects of Genotypes and Plant Density on Yield, Yield Components and Photosynthesis in Bt Transgenic Cotton , 2006 .

[137]  M. Adang,et al.  Dual Resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa Toxins in Heliothis virescens Suggests Multiple Mechanisms of Resistance , 2003, Applied and Environmental Microbiology.

[138]  T. Anderson,et al.  Measuring gene flow in the cultivation of transgenic cotton (Gossypium hirsutum L.) , 2005, Molecular biotechnology.

[139]  Kongming Wu,et al.  Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China. , 2007, Journal of invertebrate pathology.

[140]  Qinglian Wang,et al.  Inheritance and segregation of exogenous genes in transgenic cotton , 2000, Journal of Genetics.

[141]  L. Malone,et al.  Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.) , 2001 .

[142]  Juliet D. Tang,et al.  Greenhouse Tests on Resistance Management of Bt Transgenic Plants Using Refuge Strategies , 2001, Journal of economic entomology.

[143]  Carl E. Pray,et al.  The Impact of Bt Cotton in China , 2003 .

[144]  I. Potrykus,et al.  Genetic Engineering of Crop Plants , 1998 .

[145]  G. Zummo,et al.  Seasonal Phenology of Allelochemicals in Cotton and Resistance to Bollworm (Lepidoptera: Noctuidae) , 1984 .

[146]  J. Huesing,et al.  The Impact of Bt Crops on the Developing World , 2004 .

[147]  William W. Lin,et al.  StarLink: Impacts on the U.S. corn market and world trade , 2003 .

[148]  M. Marvier,et al.  Can crop transgenes be kept on a leash , 2005 .

[149]  Pierre Martin,et al.  A modelling approach of the sustainability of Bt cotton grown by small farmers in West Africa , 2003 .

[150]  Danny J. Llewellyn,et al.  Containment of regulated genetically modified cotton in the field , 2007 .

[151]  S. Turnipseed,et al.  Predaceous Arthropods and Lepidopteran Pests on Conventional, Bollgard, and Bollgard II Cotton Under Untreated and Disrupted Conditions , 2005 .

[152]  S. Turnipseed,et al.  A Multiyear, Large-Scale Comparison of Arthropod Populations on Commercially Managed Bt and Non-Bt Cotton Fields , 2005 .

[153]  Stuart E. Marsh,et al.  Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[154]  V. R. Gadwal The Indian seed industry: Its history, current status and future , 2003 .

[155]  Colin Thirtle,et al.  Can GM-Technologies Help the Poor? The Impact of Bt Cotton in Makhathini Flats, KwaZulu-Natal , 2003 .

[156]  Peter C. Ellsworth,et al.  Bollgard® and Bollgard II® Efficacy in Near Isogenic Lines of 'DP50' Upland Cotton in Arizona , 2001 .

[157]  G. Matthews,et al.  Insect Pests of Cotton , 1994 .

[158]  Lewis J. Wilson,et al.  Target and non-target effects on the invertebrate community of Vip cotton, a new insecticidal transgenic , 2007 .

[159]  J. A. Mckenzie,et al.  Ecological and Evolutionary Aspects of Insecticide Resistance. , 1997 .

[160]  M. K. Lee,et al.  Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. , 2006, Biochemical and biophysical research communications.

[161]  J. B.J. van Rensburg,et al.  First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize , 2007 .

[162]  M. O’Callaghan,et al.  Effects of plants genetically modified for insect resistance on nontarget organisms. , 2005, Annual review of entomology.

[163]  B. Raymond,et al.  Genes and environment interact to determine the fitness costs of resistance to Bacillus thuringiensis , 2005, Proceedings of the Royal Society B: Biological Sciences.

[164]  B. Federici,et al.  Effects of Bt on Non-Target Organisms , 2003 .

[165]  R. Fuchs,et al.  Specificity and efficacy of purified Bacillus thuringiensis proteins against agronomically important insects. , 1990, Journal of invertebrate pathology.

[166]  C. S. Dhawad,et al.  Temporal and intra-plant variability of Cry1Ac expression in Bt-cotton and its influence on the survival of the cotton bollworm, Helicoverpa armigera(Hubner) (Noctuidae: Lepidoptera) , 2005 .

[167]  G. Liang Genetically Modified Crops: Their Development, Uses, and Risks , 2004 .

[168]  J. Falck-Zepeda,et al.  Transgenic Cotton in Mexico: A Case Study of the Comarca Lagunera , 2003 .

[169]  Kongming Wu,et al.  Seasonal pattern of infestation by pink bollworm Pectinophora gossypiella (Saunders) in field plots of Bt transgenic cotton in the Yangtze River valley of China , 2004 .

[170]  B. M. Khadi,et al.  Synchronized boll development of Bt cotton hybrids and their physiological consequences , 2007 .

[171]  Pierre Martin,et al.  Modelling the role of refuges for sustainable management of dual-gene Bt Cotton in West African smallholder farming systems , 2007 .

[172]  Gary P. Fitt,et al.  Abundance of Overwintering Pupae and the Spring Generation of Helicoverpa spp. (Lepidoptera: Noctuidae) in Northern New South Wales, Australia: Implications for Pest Management , 1990 .

[173]  B. Tabashnik,et al.  Reversing insect adaptation to transgenic insecticidal plants , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[174]  F. Bigler,et al.  Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. , 2007, FEMS microbiology ecology.

[175]  Z. W. Shappley,et al.  Partial characterization of cotton plants expressing two toxin proteins from Bacillus thuringiensis: relative toxin contribution, toxin interaction, and resistance management , 2003 .

[176]  E. Finnegan,et al.  Season-Long Variation in Expression of Cry1Ac Gene and Efficacy of Bacillus thuringiensis Toxin in Transgenic Cotton Against Helicoverpa armigera (Lepidoptera: Noctuidae) , 2005, Journal of economic entomology.

[177]  Kongming Wu,et al.  Efficacy of transgenic cotton containing a cry1Ac gene from Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera: Noctuidae) in northern China. , 2003, Journal of economic entomology.

[178]  G. Flachowsky,et al.  Studies on feeds from genetically modified plants (GMP) – Contributions to nutritional and safety assessment , 2007 .

[179]  P. Gullan,et al.  Scale Insects under Eucalypt Bark: a Revision of the Australian Genus Phacelococcus Miller (Hemiptera: Coccoidea: Eriococcidae) , 1997 .

[180]  B. Fakrudin,et al.  Resistant Pest Management Newsletter , 2004 .

[181]  Kongming Wu,et al.  Seasonal abundance of the mirids, Lygus lucorum and Adelphocoris spp. (Hemiptera : Miridae) on Bt cotton in northern China , 2002 .

[182]  J. Ferré,et al.  Biochemistry and Genetics of Insect Resistance to Bacillus thuringiensis , 2002 .

[183]  Andrew K. Jones,et al.  Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[184]  J. Gore,et al.  Bollworm (Lepidoptera: Noctuidae) Survival on ‘Bollgard’ and ‘Bollgard II’ Cotton Flower Bud and Flower Components , 2001, Journal of economic entomology.

[185]  J. Daniel Hare,et al.  Interactions amongHeliothis virescens larvae, cotton condensed tannin and the CryIA(c) δ-endotoxin ofBacillus thuringiensis , 1993, Journal of Chemical Ecology.

[186]  Jörg Romeis,et al.  Transgenic crops expressing Bacillus thuringiensis toxins and biological control , 2006, Nature Biotechnology.

[187]  F. Gould,et al.  Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[188]  Kirsi-Marja Oksman-Caldentey,et al.  Plant Biotechnology and Transgenic Plants , 2002 .

[189]  E. Lam,et al.  Two binding sites for the plant transcription factor ASF-1 can respond to auxin treatments in transgenic tobacco. , 1994, The Journal of biological chemistry.

[190]  A. Hilbeck,et al.  Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field , 2003, Molecular ecology.

[191]  C. Ellers-kirk,et al.  Cadherin-Based Resistance to Bacillus thuringiensis Cotton in Hybrid Strains of Pink Bollworm: Fitness Costs and Incomplete Resistance , 2006, Journal of economic entomology.

[192]  Scott Rozelle,et al.  Plant Biotechnology in China , 2002, Science.

[193]  Xiang-Dong Liu,et al.  Impact of transgenic cotton plants on a non‐target pest, Aphis gossypii Glover , 2005 .

[194]  B. Tabashnik,et al.  Simulated Effects of Transgenic Bt Crops on Specialist Parasitoids of Target Pests , 2005 .

[195]  J. Finnegan,et al.  Transgene Inactivation: Plants Fight Back! , 1994, Bio/Technology.

[196]  M. Fok,et al.  Boll distribution patterns in Bt and non-Bt cotton cultivars: II. Study on small-scale farming systems in South Africa , 2006 .

[197]  J. R. Bradley,et al.  Cross-Resistance Responses of Cry1Ac-Selected Heliothis virescens (Lepidoptera: Noctuidae) to the Bacillus thuringiensis Protein Vip3A , 2007, Journal of economic entomology.

[198]  G. Zhou,et al.  Introduction of exogenous DNA into cotton embryos. , 1983, Methods in enzymology.

[199]  J. Greenplate Quantification of Bacillus thuringiensis Insect Control Protein Cry1Ac Over Time in Bollgard Cotton Fruit and Terminals , 1999 .

[200]  S. Morin,et al.  EVOLUTIONARY TRADE‐OFFS OF INSECT RESISTANCE TO BACILLUS THURINGIENSIS CROPS: FITNESS COST AFFECTING PATERNITY , 2005, Evolution; international journal of organic evolution.

[201]  P. Byrne,et al.  An Empirically Derived Model of Field-Scale Gene Flow in Winter Wheat , 2007 .

[202]  B. Tabashnik,et al.  Control of Resistant Pink Bollworm (Pectinophora gossypiella) by Transgenic Cotton That Produces Bacillus thuringiensis Toxin Cry2Ab , 2002, Applied and Environmental Microbiology.

[203]  B. Tabashnik,et al.  Evolution of Resistance to Transgenic Crops: Interactions Between Insect Movement and Field Distribution , 2005 .

[204]  F. Gould,et al.  Increasing tolerance to Cry1Ac cotton from cotton bollworm, Helicoverpa armigera, was confirmed in Bt cotton farming area of China , 2007 .

[205]  N. Crickmore,et al.  Bacillus thuringiensis and Its Pesticidal Crystal Proteins , 1998, Microbiology and Molecular Biology Reviews.

[206]  Richard Bennett,et al.  Explaining contradictory evidence regarding impacts of genetically modified crops in developing countries. Varietal performance of transgenic cotton in India , 2005, The Journal of Agricultural Science.

[207]  Carl E. Pray,et al.  The Distribution of Benefits from Bt Cotton Adoption in South Africa , 2004 .

[208]  Ai-Min Ren,et al.  Impact of transgenic Bacillus thuringiensis cotton on a non‐target pest Tetranychus spp. in northern China , 2006 .

[209]  J. Westbrook,et al.  Detection and Evolution of Resistance to the Pyrethroid Cypermethrin in Helicoverpa zea (Lepidoptera: Noctuidae) Populations in Texas , 2007, Environmental entomology.

[210]  R. Bennett,et al.  Farm-Level Economic Performance of Genetically Modified Cotton in Maharashtra, India , 2006 .

[211]  R. Twyman,et al.  Genetic Transformation of Plants and Their Cells , 2002 .

[212]  G. A. Matthews,et al.  Smallholder cotton production in sub-Saharan Africa: An assessment of the way forward , 2006 .

[213]  M. Matzke,et al.  How and Why Do Plants Inactivate Homologous (Trans)genes? , 1995, Plant physiology.

[214]  Sujatha Sankula,et al.  Comparative Environmental Impacts of Biotechnology-derived and Traditional Soybean , 2002 .

[215]  C. Ellers-kirk,et al.  Large-Scale Management of Insect Resistance to Transgenic Cotton in Arizona: Can Transgenic Insecticidal Crops be Sustained? , 2001, Journal of economic entomology.

[216]  G. DeGrandi-Hoffman,et al.  Outcrossed cottonseed and adventitious Bt plants in Arizona refuges. , 2008, Environmental biosafety research.

[217]  Terri Raney,et al.  Economic impact of transgenic crops in developing countries. , 2006, Current opinion in biotechnology.

[218]  H. Dong,et al.  Variability of Endotoxin Expression in Bt Transgenic Cotton , 2007 .

[219]  H. D. Burges,et al.  Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization, and activity against insect pests , 1997 .

[220]  R. Akhurst,et al.  Relative Fitness of Cry1A-Resistant and -Susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on Conventional and Transgenic Cotton , 2004, Journal of economic entomology.

[221]  J. Myers,et al.  The cost of resistance to Bacillus thuringiensis varies with the host plant of Trichoplusia ni , 2005, Proceedings of the Royal Society B: Biological Sciences.

[222]  P. Vermij Liberty Link rice raises specter of tightened regulations , 2006, Nature Biotechnology.

[223]  Timothy J. Dennehy,et al.  Delayed resistance to transgenic cotton in pink bollworm , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[224]  H. Sharma,et al.  Influence of transgenic cotton on the relative abundance and damage by target and non-target insect pests under different protection regimes in India , 2006 .

[225]  Richard T. Roush,et al.  Insect Resistance to Transgenic Bt Crops: Lessons from the Laboratory and Field , 2003, Journal of economic entomology.

[226]  KS Jayaraman,et al.  India produces homegrown GM cotton , 2004, Nature Biotechnology.

[227]  R. Jackson,et al.  ARTHROPOD MANAGEMENT Field Performance of Transgenic Cottons Expressing One or Two Bacillus thuringiensis Endotoxins Against Bollworm, Helicoverpa zea (Boddie) , 2003 .

[228]  Erik V. Nordheim,et al.  Degree of Pollen Dispersal by Insects from a Field Test of Genetically Engineered Cotton , 1991 .

[229]  C. Bhatia,et al.  Accelerating the commercialization of home-grown genetically engineered crops , 2005 .

[230]  Gary Fitt,et al.  Pollen dispersal from two field trials of transgenic cotton in the Namoi Valley, Australia , 1996, Molecular Breeding.

[231]  R. Heimlich,et al.  Economic and Environmental Impacts of Herbicide Tolerant and Insect Resistant Crops in the United States , 2003 .

[232]  A. Wieczorek,et al.  Potential gene flow from agricultural crops to native plant relatives in the Hawaiian Islands , 2007 .