Nepotistic relationships in Twitter and their impact on rank prestige algorithms

Abstract Micro-blogging services such as Twitter allow anyone to publish anything, anytime. Needless to say, many of the available contents can be diminished as babble or spam. However, given the number and diversity of users, some valuable pieces of information should arise from the stream of tweets. Thus, such services can develop into valuable sources of up-to-date information (the so-called real-time web) provided a way to find the most relevant/trustworthy/authoritative users is available. Hence, this makes a highly pertinent question for which graph centrality methods can provide an answer. In this paper the author offers a comprehensive survey of feasible algorithms for ranking users in social networks, he examines their vulnerabilities to linking malpractice in such networks, and suggests an objective criterion against which to compare such algorithms. Additionally, he suggests a first step towards “desensitizing” prestige algorithms against cheating by spammers and other abusive users.

[1]  Surithong Srisa‐ard,et al.  Mining the Web: Discovering Knowledge from Hypertext Data , 2003 .

[2]  Danah Boyd,et al.  Detecting Spam in a Twitter Network , 2009, First Monday.

[3]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[4]  Michalis Faloutsos,et al.  A simple conceptual model for the Internet topology , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[5]  Kyumin Lee,et al.  Uncovering social spammers: social honeypots + machine learning , 2010, SIGIR.

[6]  P. Gross,et al.  COLLEGE LIBRARIES AND CHEMICAL EDUCATION. , 1927, Science.

[7]  E Brodman,et al.  Choosing Physiology Journals. , 1944, Bulletin of the Medical Library Association.

[8]  Krishna Bharat,et al.  Improved algorithms for topic distillation in a hyperlinked environment , 1998, SIGIR '98.

[9]  Bing Liu,et al.  Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data , 2006, Data-Centric Systems and Applications.

[10]  Shuai Li,et al.  Facet: Streaming over Videoconferencing for Censorship Circumvention , 2014, WPES.

[11]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[12]  Krishna P. Gummadi,et al.  Measuring User Influence in Twitter: The Million Follower Fallacy , 2010, ICWSM.

[13]  Ramon Sangüesa,et al.  Extracting reputation in multi agent systems by means of social network topology , 2002, AAMAS '02.

[14]  E. Garfield Citation analysis as a tool in journal evaluation. , 1972, Science.

[15]  Krishna P. Gummadi,et al.  You are who you know: inferring user profiles in online social networks , 2010, WSDM '10.

[16]  Hector Garcia-Molina,et al.  Combating Web Spam with TrustRank , 2004, VLDB.

[17]  Chaomei Chen,et al.  Mining the Web: Discovering knowledge from hypertext data , 2004, J. Assoc. Inf. Sci. Technol..

[18]  Laks V. S. Lakshmanan,et al.  Learning influence probabilities in social networks , 2010, WSDM '10.

[19]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1998, SODA '98.

[20]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[21]  Miranda Mowbray A Rice Cooker wants to be my Friend on Twitter , 2011 .

[22]  Niloy Ganguly,et al.  Spammers' networks within online social networks: a case-study on Twitter , 2011, WWW.

[23]  Guofei Gu,et al.  Analyzing spammers' social networks for fun and profit: a case study of cyber criminal ecosystem on twitter , 2012, WWW.

[24]  Gianluca Stringhini,et al.  Detecting spammers on social networks , 2010, ACSAC '10.

[25]  Alex Leavitt,et al.  The Influentials : New Approaches for Analyzing Influence on Twitter , 2009 .

[26]  Duncan J. Watts,et al.  Everyone's an influencer: quantifying influence on twitter , 2011, WSDM '11.

[27]  Ronald Fagin,et al.  Comparing top k lists , 2003, SODA '03.

[28]  Munmun De Choudhury,et al.  "Birds of a Feather": Does User Homophily Impact Information Diffusion in Social Media? , 2010, ArXiv.

[29]  Sushil Jajodia,et al.  Who is tweeting on Twitter: human, bot, or cyborg? , 2010, ACSAC '10.

[30]  Christoph Meinel,et al.  Telling experts from spammers: expertise ranking in folksonomies , 2009, SIGIR.

[31]  Haining Wang,et al.  Detecting Social Spam Campaigns on Twitter , 2012, ACNS.

[32]  Michael L. Nelson,et al.  Agreeing to disagree: search engines and their public interfaces , 2007, JCDL '07.

[33]  Fang Wu,et al.  Social Networks that Matter: Twitter Under the Microscope , 2008, First Monday.

[34]  Hector Garcia-Molina,et al.  Web Spam Taxonomy , 2005, AIRWeb.

[35]  H. Venkateswaran,et al.  A Crow or a Blackbird?: Using True Social Network and Tweeting Behavior to Detect Malicious Entities in Twitter , 2010 .

[36]  Krishna P. Gummadi,et al.  Understanding and combating link farming in the twitter social network , 2012, WWW.

[37]  Daniel M. Romero,et al.  Influence and passivity in social media , 2010, ECML/PKDD.

[38]  Georgia Koutrika,et al.  Fighting Spam on Social Web Sites: A Survey of Approaches and Future Challenges , 2007, IEEE Internet Computing.

[39]  Calton Pu,et al.  Study of Trend-Stuffing on Twitter through Text Classification , 2010 .

[40]  Ricardo A. Baeza-Yates,et al.  Pagerank Increase under Different Collusion Topologies , 2005, AIRWeb.

[41]  Vern Paxson,et al.  @spam: the underground on 140 characters or less , 2010, CCS '10.

[42]  Herman H. Fussler,et al.  Characteristics of the Research Literature Used by Chemists and Physicists in the United States. Part II , 1949, The Library Quarterly.

[43]  Daniel Gayo-Avello,et al.  De retibus socialibus et legibus momenti , 2010, ArXiv.

[44]  Alfred J. Lotka,et al.  The frequency distribution of scientific productivity , 1926 .

[45]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[46]  Virgílio A. F. Almeida,et al.  Detecting Spammers on Twitter , 2010 .

[47]  Timothy W. Finin,et al.  Why we twitter: understanding microblogging usage and communities , 2007, WebKDD/SNA-KDD '07.