Diagrammatic logic applied to a parameterisation process

This paper provides an abstract definition of a class of logics, called diagrammatic logics, together with a definition of morphisms and 2-morphisms between them. The definition of the 2-category of diagrammatic logics relies on category theory, mainly on adjunction, categories of fractions and limit sketches. This framework is applied to the formalisation of a parameterisation process. This process, which consists of adding a formal parameter to some operations in a given specification, is presented as a morphism of logics. Then the parameter passing process for recovering a model of the given specification from a model of the parameterised specification and an actual parameter is shown to be a 2-morphism of logics.

[1]  Horst Reichel,et al.  Defining Equations in Terminal Coalgebras , 1994, COMPASS/ADT.

[2]  D. M. Kan,et al.  FUNCTORS INVOLVING C.S.S. COMPLEXES , 1958 .

[3]  P. Gabriel,et al.  Lokal α-präsentierbare Kategorien , 1971 .

[4]  Dominique Duval Diagrammatic Specifications , 2003, Math. Struct. Comput. Sci..

[5]  M. Makkai Generalized sketches as a framework for completeness theorems , 1997 .

[6]  Vico Pascual,et al.  An Object-oriented Interpretation of the EAT System , 2003, Applicable Algebra in Engineering, Communication and Computing.

[7]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[8]  César Domínguez,et al.  A parameterization process as a categorical construction , 2009, ArXiv.

[9]  César Domínguez,et al.  Modeling Inheritance as Coercion in the Kenzo System , 2006, J. Univers. Comput. Sci..

[10]  César Domínguez,et al.  Object oriented institutions to specify symbolic computation systems , 2007, RAIRO Theor. Informatics Appl..

[11]  Charles Wells,et al.  Sketches: Outline with References , 1994 .

[12]  Grigore Rosu,et al.  Institution Morphisms , 2013, Formal Aspects of Computing.

[13]  Andrew M. Pitts,et al.  Categorical logic , 2001, LICS 2001.

[14]  S. Lellahi Categorical abstract data type (CADT) , 1989 .

[15]  D. M. Kan,et al.  Adjoint Functors , 2022 .

[16]  Michael Barr,et al.  Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.

[17]  Joseph A. Goguen,et al.  Introducing Institutions , 1983, Logic of Programs.

[18]  Andrzej Tarlecki,et al.  Towards Heterogeneous Specifications , 1998, FroCoS.

[19]  Jean-Guillaume Dumas,et al.  Cartesian effect categories are Freyd-categories , 2009, J. Symb. Comput..

[20]  César Domínguez,et al.  Towards Diagrammatic Specifications of Symbolic Computation Systems , 2005, Mathematics, Algorithms, Proofs.

[21]  Peter Gabriel,et al.  Calculus of Fractions and Homotopy Theory , 1967 .

[22]  Dominique Duval Diagrammatic Inference , 2007, ArXiv.

[23]  Kenneth L Stoler A hidden agenda. , 2008, The New York state dental journal.