Survey on Terahertz Nanocommunication and Networking: A Top-Down Perspective

Recent developments in nanotechnology herald nanometer-sized devices expected to bring light to a number of groundbreaking applications. Communication with and among nanodevices will be needed for unlocking the full potential of such applications. As the traditional communication approaches cannot be directly applied in nanocommunication, several alternative paradigms have emerged. Among them, electromagnetic nanocommunication in the terahertz (THz) frequency band is particularly promising, mainly due to the breakthrough of novel materials such as graphene. For this reason, numerous research efforts are nowadays targeting THz band nanocommunication and consequently nanonetworking. As it is expected that these trends will continue in the future, we see it beneficial to summarize the current status in these research domains. In this survey, we therefore aim to provide an overview of the current THz nanocommunication and nanonetworking research. Specifically, we discuss the applications envisioned to be supported by nanonetworks operating in the THz band, together with the requirements such applications pose on the underlying nanonetworks. Subsequently, we provide an overview of the current contributions on the different layers of the protocol stack, as well as the available channel models and experimentation tools. As the final contribution, we identify a number of open research challenges and outline several potential future research directions.

[1]  Youssef Chahibi,et al.  Molecular communication for drug delivery systems: A survey , 2017, Nano Commun. Networks.

[2]  Jussi Kangasharju,et al.  Realizing the Internet of Nano Things: Challenges, Solutions, and Applications , 2013, Computer.

[3]  Hakim Mabed Enhanced spread in time on-off keying technique for dense Terahertz nanonetworks , 2017, 2017 IEEE Symposium on Computers and Communications (ISCC).

[4]  Sotiris Ioannidis,et al.  A novel protocol for network-controlled metasurfaces , 2017, NANOCOM.

[5]  Nazim Agoulmine,et al.  Enabling communication and cooperation in bio-nanosensor networks: toward innovative healthcare solutions , 2012, IEEE Wireless Communications.

[6]  Rafael Asorey-Cacheda,et al.  Throughput Optimization in Flow-Guided Nanocommunication Networks , 2020, IEEE Access.

[7]  Ove Edfors,et al.  Real-Time Implementation Aspects of Large Intelligent Surfaces , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[8]  Fariha Afsana,et al.  Outage capacity analysis of cluster-based forwarding scheme for Body Area Network using nano-electromagnetic communication , 2015, 2015 2nd International Conference on Electrical Information and Communication Technologies (EICT).

[9]  Zhi Chen,et al.  Intelligent reflecting surface enhanced indoor terahertz communication systems , 2020, Nano Commun. Networks.

[10]  Alenka Zajic,et al.  Characterization of 300-GHz Wireless Channel on a Computer Motherboard , 2016, IEEE Transactions on Antennas and Propagation.

[11]  Hong-Hsu Yen Energy aware and signal quality aware data aggregation touting in wireless nanosensor networks , 2017, 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC).

[12]  Feng Zheng,et al.  High-Accuracy Indoor Localization Based on Chipless RFID Systems at THz Band , 2018, IEEE Access.

[13]  Julien Bourgeois,et al.  Scalable Simulation of Wireless Electro-Magnetic Nanonetworks , 2015, 2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing.

[14]  Nikolaus Correll,et al.  Texture recognition and localization in amorphous robotic skin , 2015, Bioinspiration & biomimetics.

[15]  Andreas Willig,et al.  Protocols and Architectures for Wireless Sensor Networks , 2005 .

[16]  分子通信 (Molecular Communication) , 2018, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[17]  Massimiliano Pierobon,et al.  A routing framework for energy harvesting wireless nanosensor networks in the Terahertz Band , 2014, Wirel. Networks.

[18]  Alberto Valdes Garcia,et al.  Graphene radio frequency receiver integrated circuit , 2014, Nature Communications.

[19]  Xiang Yi,et al.  Filling the Gap: Silicon Terahertz Integrated Circuits Offer Our Best Bet , 2019, IEEE Microwave Magazine.

[20]  Y. Hao,et al.  Numerical Analysis and Characterization of THz Propagation Channel for Body-Centric Nano-Communications , 2015, IEEE Transactions on Terahertz Science and Technology.

[21]  George A. Bekey,et al.  The Behavioral Self-organization Of Nanorobots Using Local Rules , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Ian F. Akyildiz,et al.  Graphene-based plasmonic nano-transceiver for terahertz band communication , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[23]  Chau Yuen,et al.  Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication , 2018, IEEE Transactions on Wireless Communications.

[24]  Kiyoung Choi,et al.  Exploiting New Interconnect Technologies in On-Chip Communication , 2012, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[25]  Akram Alomainy,et al.  Nano-Communication for Biomedical Applications: A Review on the State-of-the-Art From Physical Layers to Novel Networking Concepts , 2016, IEEE Access.

[26]  Josep Miquel Jornet,et al.  Wave Propagation and Channel Modeling in Chip-Scale Wireless Communications: A Survey From Millimeter-Wave to Terahertz and Optics , 2020, IEEE Access.

[27]  Michele C. Weigle,et al.  RIH-MAC: Receiver-Initiated Harvesting-aware MAC for NanoNetworks , 2014, NANOCOM' 14.

[28]  Brendan Jennings,et al.  Performance Analysis of Plant Monitoring Nanosensor Networks at THz Frequencies , 2016, IEEE Internet of Things Journal.

[29]  Efthymios Lallas,et al.  Key Roles of Plasmonics in Wireless THz Nanocommunications—A Survey , 2019, Applied Sciences.

[30]  Bryan Ng,et al.  Pulse Arrival Scheduling for Nanonetworks Under Limited IoT Access Bandwidth , 2017, 2017 IEEE 42nd Conference on Local Computer Networks (LCN).

[31]  P. S. Anwar,et al.  A Touch-Communication Framework for Drug Delivery Based on a Transient Microbot System , 2015, IEEE Transactions on NanoBioscience.

[32]  Camel Tanougast,et al.  A new deadlock-free fault-tolerant routing algorithm for NoC interconnections , 2009, 2009 International Conference on Field Programmable Logic and Applications.

[33]  Aydin Babakhani,et al.  Gone in a Picosecond: Techniques for the Generation and Detection of Picosecond Pulses and Their Applications , 2016, IEEE Microwave Magazine.

[34]  Prateek Juyal,et al.  300 GHz Channel Characterization of Chip-to-Chip Communication in Metal Enclosure , 2019, 2019 13th European Conference on Antennas and Propagation (EuCAP).

[35]  Ian F. Akyildiz,et al.  A Novel Communication Paradigm for High Capacity and Security via Programmable Indoor Wireless Environments in Next Generation Wireless Systems , 2018, Ad Hoc Networks.

[36]  Leandros Tassiulas,et al.  Resource Allocation and Cross-Layer Control in Wireless Networks , 2006, Found. Trends Netw..

[37]  Sajal K. Das,et al.  DRIH-MAC: A Distributed Receiver-Initiated Harvesting-Aware MAC for Nanonetworks , 2015, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

[38]  Tomas Palacios,et al.  Use of THz Photoconductive Sources to Characterize Tunable Graphene RF Plasmonic Antennas , 2014, 1401.6878.

[39]  Sebastian Canovas-Carrasco,et al.  Conceptual Design of a Nano-Networking Device , 2016, Sensors.

[40]  Gerhard P. Fettweis,et al.  The Tactile Internet: Applications and Challenges , 2014, IEEE Vehicular Technology Magazine.

[41]  Patrick Charpentier,et al.  Localization algorithms based on hop counting for Wireless Nano-Sensor networks , 2014, 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[42]  F. Calmon,et al.  Miniaturized tunable terahertz antenna based on graphene , 2014 .

[43]  Albert Cabellos-Aparicio,et al.  Error Analysis of Programmable Metasurfaces for Beam Steering , 2020, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[44]  Sotiris Ioannidis,et al.  Lightweight, self-tuning data dissemination for dense nanonetworks , 2016, Nano Commun. Networks.

[45]  Ian F. Akyildiz,et al.  Exploration of Intercell Wireless Millimeter-Wave Communication in the Landscape of Intelligent Metasurfaces , 2019, IEEE Access.

[46]  Hyoukjun Kwon,et al.  Rethinking NoCs for spatial neural network accelerators , 2017, 2017 Eleventh IEEE/ACM International Symposium on Networks-on-Chip (NOCS).

[47]  Raed M. Shubair,et al.  On graphene-based THz plasmonic nano-antennas , 2016, 2016 16th Mediterranean Microwave Symposium (MMS).

[48]  Sotiris Ioannidis,et al.  CORONA: A Coordinate and Routing system for Nanonetworks , 2015, NANOCOM.

[49]  Giuseppe Piro,et al.  Simulating Wireless Nano Sensor Networks in the NS-3 Platform , 2013, 2013 27th International Conference on Advanced Information Networking and Applications Workshops.

[50]  Sebastian Canovas-Carrasco,et al.  Optimal Transmission Policy Derivation for IoNT Flow-Guided Nano-Sensor Networks , 2019, IEEE Internet of Things Journal.

[51]  Ian F. Akyildiz,et al.  Distance-aware multi-carrier (DAMC) modulation in Terahertz Band communication , 2014, 2014 IEEE International Conference on Communications (ICC).

[52]  Pearl Brereton,et al.  Performing systematic literature reviews in software engineering , 2006, ICSE.

[53]  Falko Dressler,et al.  Connecting in-body nano communication with body area networks: Challenges and opportunities of the Internet of Nano Things , 2015, Nano Commun. Networks.

[54]  Kaushik Sengupta,et al.  Dynamic Waveform Shaping With Picosecond Time Widths , 2017, IEEE Journal of Solid-State Circuits.

[55]  Xiaodai Dong,et al.  Terahertz Communication for Vehicular Networks , 2017, IEEE Trans. Veh. Technol..

[56]  Ian F. Akyildiz,et al.  Nanonetworks: A new frontier in communications , 2012, 2010 International Conference on Security and Cryptography (SECRYPT).

[57]  Ian F. Akyildiz,et al.  TeraNets: ultra-broadband communication networks in the terahertz band , 2014, IEEE Wireless Communications.

[58]  Ian F. Akyildiz,et al.  Multi-Wideband Waveform Design for Distance-Adaptive Wireless Communications in the Terahertz Band , 2016, IEEE Transactions on Signal Processing.

[59]  I. Akyildiz,et al.  Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[60]  Giuseppe Piro,et al.  On the design of an energy-harvesting protocol stack for Body Area Nano-NETworks , 2015, Nano Commun. Networks.

[61]  Guangjie Han,et al.  Pulse-Based Distance Accumulation Localization Algorithm for Wireless Nanosensor Networks , 2017, IEEE Access.

[62]  Mahbub Hassan,et al.  Frequency hopping strategies for improving terahertz sensor network performance over composition varying channels , 2014, Proceeding of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014.

[63]  Matthew D. Higgins,et al.  Relay-assisted nanoscale communication in the THz band , 2017 .

[64]  Najah AbuAli,et al.  Internet of nano-things healthcare applications: Requirements, opportunities, and challenges , 2015, 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).

[65]  David W. Matolak,et al.  A New Frontier in Ultralow Power Wireless Links: Network-on-Chip and Chip-to-Chip Interconnects , 2015, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[66]  Amlan Ganguly,et al.  Reconfigurable Wireless Network-on-Chip with a Dynamic Medium Access Mechanism , 2015, NOCS.

[67]  Bernhard Rinner,et al.  Nano-cameras: a key enabling technology for the internet of multimedia nano-things , 2018, NANOCOM.

[68]  Christos Liaskos,et al.  A Promise of Realizable, Ultra-Scalable Communications at Nano-Scale:A Multi-Modal Nano-Machine Architecture , 2015, IEEE Transactions on Computers.

[69]  Ian F. Akyildiz,et al.  Low-Weight Channel Coding for Interference Mitigation in Electromagnetic Nanonetworks in the Terahertz Band , 2011, 2011 IEEE International Conference on Communications (ICC).

[70]  Davide Bertozzi,et al.  The fast evolving landscape of on-chip communication , 2015, Des. Autom. Embed. Syst..

[71]  Masoud Daneshtalab,et al.  MD: Minimal path-based fault-tolerant routing in on-Chip Networks , 2013, 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC).

[72]  Sotiris Ioannidis,et al.  Packet routing in 3D nanonetworks: A lightweight, linear-path scheme , 2017, Nano Commun. Networks.

[73]  Pietro Liò,et al.  Applications of molecular communications to medicine: A survey , 2016, Nano Commun. Networks.

[74]  Gary B. Wills,et al.  Internet of Nano Things: Security Issues and Applications , 2018, ICCBDC.

[75]  J. S. Gomez-Diaz,et al.  Graphene antennas: Can integration and reconfigurability compensate for the loss? , 2013, 2013 European Microwave Conference.

[76]  A. Fricke,et al.  A model for the reflection of terahertz signals from printed circuit board surfaces , 2017, 2017 11th European Conference on Antennas and Propagation (EUCAP).

[77]  Julien Bourgeois,et al.  Low-Weight Code Comparison for Electromagnetic Wireless Nanocommunication , 2016, IEEE Internet of Things Journal.

[78]  Eduard Alarcón,et al.  N3Sim: Simulation framework for diffusion-based molecular communication nanonetworks , 2014, Simul. Model. Pract. Theory.

[79]  E. Narimanov,et al.  Hyperbolic metamaterials , 2013, 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[80]  George K. Karagiannidis,et al.  An energy efficient modulation scheme for body-centric nano-communications in the THz band , 2018, 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST).

[81]  Chun Tung Chou,et al.  Reliability analysis of time-varying wireless nanoscale sensor networks , 2015, 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO).

[82]  Amlan Ganguly,et al.  A demand-aware predictive dynamic bandwidth allocation mechanism for wireless network-on-chip , 2016, 2016 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP).

[83]  Josep Miquel Jornet,et al.  Stochastic Interference Modeling and Experimental Validation for Pulse-Based Terahertz Communication , 2019, IEEE Transactions on Wireless Communications.

[84]  Fadi Al-Turjman,et al.  A Cognitive Routing Protocol for Bio-Inspired Networking in the Internet of Nano-Things (IoNT) , 2020, Mob. Networks Appl..

[85]  Kyung Sup Kwak,et al.  Enhanced Rate Division Multiple Access for Electromagnetic Nanonetworks , 2016, IEEE Sensors Journal.

[86]  Sung Un Kim,et al.  Slotted CSMA/CA Based Energy Efficient MAC Protocol Design in Nanonetworks , 2018, ArXiv.

[87]  Mauricio Hanzich,et al.  Broadcast-Enabled Massive Multicore Architectures: A Wireless RF Approach , 2015, IEEE Micro.

[88]  Jonathan Rodriguez,et al.  Terahertz-Enabled Wireless System for Beyond-5G Ultra-Fast Networks: A Brief Survey , 2019, IEEE Network.

[89]  Mahbub Hassan,et al.  Performance analysis of carrier-less modulation schemes for wireless nanosensor networks , 2015, 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO).

[90]  Amlan Ganguly,et al.  A folded wireless network-on-chip using graphene based THz-band antennas , 2017, NANOCOM.

[91]  Julius Georgiou,et al.  Programmable Metamaterials for Software-Defined Electromagnetic Control: Circuits, Systems, and Architectures , 2020, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[92]  Josep Miquel Jornet,et al.  TeraSim: An ns-3 extension to simulate Terahertz-band communication networks , 2018, Nano Commun. Networks.

[93]  Vitaly Petrov Feasibility study of the THz band for communications between wearable electronics , 2015, 2015 17th Conference of Open Innovations Association (FRUCT).

[94]  Andhra Pradesh,et al.  Energy Efficient, Scalable and Reliable MAC Protocol for Electromagnetic Communication among Nano Devices , 2012 .

[95]  Raed M. Shubair,et al.  Stochastic noise model for intra-body terahertz nanoscale communication , 2018, NANOCOM.

[96]  Zhong-Lin Wang Towards Self‐Powered Nanosystems: From Nanogenerators to Nanopiezotronics , 2008 .

[97]  Ian F. Akyildiz,et al.  A New Wireless Communication Paradigm through Software-Controlled Metasurfaces , 2018, IEEE Communications Magazine.

[98]  T. Kurner,et al.  Diffuse Scattering From Rough Surfaces in THz Communication Channels , 2011, IEEE Transactions on Terahertz Science and Technology.

[99]  JAMAL N. AL-KARAKI,et al.  Routing techniques in wireless sensor networks: a survey , 2004, IEEE Wireless Communications.

[100]  Eduard Alarcón,et al.  MAC-oriented programmable terahertz PHY via graphene-based Yagi-Uda antennas , 2018, 2018 IEEE Wireless Communications and Networking Conference (WCNC).

[101]  Ian F. Akyildiz,et al.  Channel Modeling and Capacity Analysis for Electromagnetic Wireless Nanonetworks in the Terahertz Band , 2011, IEEE Transactions on Wireless Communications.

[102]  Chong Han,et al.  Channel Modeling and Characterization for Wireless Networks-on-Chip Communications in the Millimeter Wave and Terahertz Bands , 2019, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

[103]  Ian F. Akyildiz,et al.  A receiver architecture for pulse-based electromagnetic nanonetworks in the Terahertz Band , 2012, 2012 IEEE International Conference on Communications (ICC).

[104]  Ian F. Akyildiz Nanonetworks: A new frontier in communications , 2010, 2010 International Conference on e-Business (ICE-B).

[105]  Shuang Zhang,et al.  Electromagnetic reprogrammable coding-metasurface holograms , 2017, Nature Communications.

[106]  Fengnian Xia,et al.  Graphene Electronics: Materials, Devices, and Circuits , 2013, Proceedings of the IEEE.

[107]  Etimad Fadel,et al.  MAC protocols for Wireless Nano-sensor Networks: Performance analysis and design guidelines , 2016, 2016 Sixth International Conference on Digital Information Processing and Communications (ICDIPC).

[108]  M. Koch,et al.  Properties of Building and Plastic Materials in the THz Range , 2007 .

[109]  Juan Cruz-Benito Systematic Literature Review & Mapping , 2016 .

[110]  Ian F. Akyildiz,et al.  Multi-Ray Channel Modeling and Wideband Characterization for Wireless Communications in the Terahertz Band , 2015, IEEE Transactions on Wireless Communications.

[111]  Murat Kuscu,et al.  Transmitter and Receiver Architectures for Molecular Communications: A Survey on Physical Design With Modulation, Coding, and Detection Techniques , 2019, Proceedings of the IEEE.

[112]  Mohamed Bakhouya,et al.  Performance evaluation of nano-On-Chip Interconnect for SoCs , 2014, 2014 International Conference on High Performance Computing & Simulation (HPCS).

[113]  Manijeh Keshtgary,et al.  A Brief Survey on Molecular and Electromagnetic Communications in Nano-Networks , 2013 .

[114]  Qingqing Wu,et al.  Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming , 2018, IEEE Transactions on Wireless Communications.

[115]  Cédric Quendo,et al.  EM Analysis of a Propagation Channel in the Sub-THz Band for Many-Core Architectures , 2019, 2019 16th European Radar Conference (EuRAD).

[116]  Tom Quirk,et al.  There’s Plenty of Room at the Bottom , 2006, Size Really Does Matter.

[117]  Sebastian Canovas-Carrasco,et al.  On the Nature of Energy-Feasible Wireless Nanosensor Networks , 2018, Sensors.

[118]  Sebastian Ebers,et al.  Hop count routing: a routing algorithm for resource constrained, identity-free medical nanonetworks , 2018, NANOCOM.

[119]  H. Bechtel,et al.  Drude Conductivity of Dirac Fermions in Graphene , 2010, 1007.4623.

[120]  Srinivasan Seshan,et al.  On-chip networks from a networking perspective: congestion and scalability in many-core interconnects , 2012, SIGCOMM '12.

[121]  Mugen Peng,et al.  Diffusion based molecular communication: principle, key technologies, and challenges , 2017, China Communications.

[122]  David W. Matolak,et al.  Channel modeling for wireless networks-on-chips , 2013, IEEE Communications Magazine.

[123]  Laura Galluccio,et al.  A timing channel-based MAC protocol for energy-efficient nanonetworks , 2015, Nano Commun. Networks.

[124]  Xiao Lu,et al.  Toward Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary Survey , 2019, IEEE Communications Surveys & Tutorials.

[125]  Markku J. Juntti,et al.  Diffraction Effects in Terahertz Band - Measurements and Analysis , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[126]  Muhammad Ali Imran,et al.  A Review on the Role of Nano-Communication in Future Healthcare Systems: A Big Data Analytics Perspective , 2018, IEEE Access.

[127]  Sebastian Ebers,et al.  BloodVoyagerS: simulation of the work environment of medical nanobots , 2018, NANOCOM.

[128]  E. Afshari,et al.  Filling the Gap With Sand: When CMOS reaches THz , 2019, IEEE Solid-State Circuits Magazine.

[129]  Chifeng Wang,et al.  A Wireless Network-on-Chip Design for Multicore Platforms , 2011, 2011 19th International Euromicro Conference on Parallel, Distributed and Network-Based Processing.

[130]  Falko Dressler,et al.  Function Centric Nano-Networking: Addressing nano machines in a medical application scenario , 2017, Nano Commun. Networks.

[131]  Josep Torrellas,et al.  Engineer the Channel and Adapt to it: Enabling Wireless Intra-Chip Communication , 2018, IEEE Transactions on Communications.

[132]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[133]  Bin Liu,et al.  KiloCore: A Fine-Grained 1,000-Processor Array for Task-Parallel Applications , 2017, IEEE Micro.

[134]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[135]  Sung-Yoon Jung,et al.  TH-PPM with non-coherent detection for multiple access in electromagnetic wireless nanocommunications , 2018, Nano Commun. Networks.

[136]  Mahbub Hassan,et al.  Event and node identification from a single-pulse transmission in self-powered nanosensor networks , 2017, NANOCOM.

[137]  Nikolaus Correll,et al.  Shape Change Through Programmable Stiffness , 2014, ISER.

[138]  Michiel van de Panne,et al.  Sensor-actuator networks , 1993, SIGGRAPH.

[139]  Raj Mittra,et al.  Multi-layer Intrabody Terahertz Wave Propagation Model for Nanobiosensing Applications , 2017, Nano Commun. Networks.

[140]  A. Cabellos-Aparicio,et al.  Graphene-based nano-patch antenna for terahertz radiation , 2012 .

[141]  D. Neumaier,et al.  Integrating graphene into semiconductor fabrication lines , 2019, Nature Materials.

[142]  Nikolaus Correll,et al.  Distributed Spatiotemporal Gesture Recognition in Sensor Arrays , 2015, ACM Trans. Auton. Adapt. Syst..

[143]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[144]  Masaru Fukushi,et al.  Fault-Tolerant Routing Algorithm for Network on Chip without Virtual Channels , 2009, 2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems.

[145]  Yin-sheng Ma,et al.  Propagation models for nanocommunication networks , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[146]  Filip Lemic,et al.  Assessing the Reliability of Energy Harvesting Terahertz Nanonetworks for Controlling Software-Defined Metamaterials , 2019, NANOCOM.

[147]  Christof Teuscher,et al.  Scalable Hybrid Wireless Network-on-Chip Architectures for Multicore Systems , 2011, IEEE Transactions on Computers.

[148]  Akram Alomainy,et al.  Power Distribution and Performance Analysis of Terahertz Communication in Artificial Skin , 2019, NANOCOM.

[149]  Julien Bourgeois,et al.  SBN: Simple Block Nanocode for nanocommunications , 2016, NANOCOM.

[150]  Jacek Jarmakiewicz,et al.  On the Internet of Nano Things in healthcare network , 2016, 2016 International Conference on Military Communications and Information Systems (ICMCIS).

[151]  Alenka Zajic,et al.  Modeling of 300 GHz Chip-to-Chip Wireless Channels in Metal Enclosures , 2020, IEEE Transactions on Wireless Communications.

[152]  Josep Miquel Jornet,et al.  Cross-layer analysis of optimal relaying strategies for terahertz-band communication networks , 2017, 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).

[153]  Avinash Karanth Kodi,et al.  Antennas and Channel Characteristics for Wireless Networks on Chips , 2017, Wireless Personal Communications.

[154]  J. Romme,et al.  Noncoherent ultra-wideband systems , 2009, IEEE Signal Processing Magazine.

[155]  Albert Cabellos-Aparicio,et al.  Time- and Frequency-Domain Analysis of Molecular Absorption in Short-Range Terahertz Communications , 2015, IEEE Antennas and Wireless Propagation Letters.

[156]  Chong Han,et al.  Propagation Modeling for Wireless Communications in the Terahertz Band , 2018, IEEE Communications Magazine.

[157]  Todd C. Mowry,et al.  Integrated Debugging of Large Modular Robot Ensembles , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[158]  Julien Bourgeois,et al.  Using Nano-wireless Communications in Micro-Robots Applications , 2014, NANOCOM' 14.

[159]  Ian F. Akyildiz,et al.  Electromagnetic wireless nanosensor networks , 2010, Nano Commun. Networks.

[160]  Patrick Chiang,et al.  A Survey Addressing On-Chip Interconnect: Energy and Reliability Considerations , 2012 .

[161]  Brendan Jennings,et al.  Nanodevice Arrays for Peripheral Nerve Fascicle Activation Using Ultrasound Energy-Harvesting , 2017, IEEE Transactions on Nanotechnology.

[162]  Eduard Alarcón,et al.  Workload Characterization of Programmable Metasurfaces , 2019, NANOCOM.

[163]  D. Jena,et al.  Broadband graphene terahertz modulators enabled by intraband transitions , 2012, Nature Communications.

[164]  Sajal K. Das,et al.  Energy Harvesting in Electromagnetic Nanonetworks , 2017, Computer.

[165]  Michael J. Medley,et al.  A Link-Layer Synchronization and Medium Access Control Protocol for Terahertz-Band Communication Networks , 2014, 2015 IEEE Global Communications Conference (GLOBECOM).

[166]  Rafael Asorey-Cacheda,et al.  On the Feasibility of Flow-Guided Nanocommunication Networks for some Medical Applications , 2020 .

[167]  Mahbub Hassan,et al.  Design and Analysis of a Wireless Nanosensor Network for Monitoring Human Lung Cells , 2015, BODYNETS.

[168]  Yi Lu,et al.  Simultaneous wireless information and power transfer for AF relaying nanonetworks in the Terahertz Band , 2017, Nano Commun. Networks.

[169]  Sotiris Ioannidis,et al.  BitSurfing: Wireless Communications with Outsourced Symbol Generation , 2018, 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD).

[170]  Manijeh Keshtgari,et al.  EEWNSN: Energy Efficient Wireless Nano Sensor Network MAC Protocol for Communications in the Terahertz Band , 2017, Wirel. Pers. Commun..

[171]  Nirmana Perera,et al.  Nanoplasma-enabled picosecond switches for ultrafast electronics , 2020, Nature.

[172]  Mohamed-Slim Alouini,et al.  Terahertz Band: The Last Piece of RF Spectrum Puzzle for Communication Systems , 2019, IEEE Open Journal of the Communications Society.

[173]  Axel Jantsch,et al.  Methods for fault tolerance in networks-on-chip , 2013, CSUR.

[174]  Josep Torrellas,et al.  Medium Access Control in Wireless Network-on-Chip: A Context Analysis , 2018, IEEE Communications Magazine.

[175]  Terrence Mak,et al.  A Resilient 2-D Waveguide Communication Fabric for Hybrid Wired-Wireless NoC Design , 2017, IEEE Transactions on Parallel and Distributed Systems.

[176]  Hakim Mabed,et al.  A flexible medium access control protocol for dense terahertz nanonetworks , 2018, NANOCOM.

[177]  Julien Bourgeois,et al.  Large scale MEMS robots cooperative map building based on realistic simulation of nano-wireless communications , 2015, Nano Commun. Networks.

[178]  Akram Alomainy,et al.  Modelling of the terahertz communication channel for in-vivo nano-networks in the presence of noise , 2016, 2016 16th Mediterranean Microwave Symposium (MMS).

[179]  Jeroen Famaey,et al.  Idling Energy Modeling and Reduction in Energy Harvesting Terahertz Nanonetworks for Controlling Software-Defined Metamaterials , 2020, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[180]  Sebastian Canovas-Carrasco,et al.  An Analytical Approach to Flow-Guided Nanocommunication Networks , 2020, Sensors.

[181]  Kazi Mohammed Saidul Huq,et al.  THz Communications for Mobile Heterogeneous Networks , 2018, IEEE Commun. Mag..

[182]  Ian F. Akyildiz,et al.  Terahertz band: Next frontier for wireless communications , 2014, Phys. Commun..

[183]  Josep Miquel Jornet,et al.  Low-weight error-prevention codes for electromagnetic nanonetworks in the Terahertz Band , 2014, Nano Commun. Networks.

[184]  Murat Kuscu,et al.  Fundamentals of Molecular Information and Communication Science , 2017, Proceedings of the IEEE.

[185]  Michael J. Medley,et al.  A Link-Layer Synchronization and Medium Access Control Protocol for Terahertz-Band Communication Networks , 2014, GLOBECOM 2014.

[186]  Yang Hao,et al.  Numerical analysis of the communication channel path loss at the THz band inside the fat tissue , 2013, 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO).

[187]  M. Juntti,et al.  Frequency and Time Domain Channel Models for Nanonetworks in Terahertz Band , 2015, IEEE Transactions on Antennas and Propagation.

[188]  Sergei A. Tretyakov,et al.  Intelligent Metasurfaces with Continuously Tunable Local Surface Impedance for Multiple Reconfigurable Functions , 2018, Physical Review Applied.

[189]  M. E. Portnoi,et al.  Carbon nanotubes as a basis for terahertz emitters and detectors , 2009, Microelectron. J..

[190]  G. Hanson Fundamental transmitting properties of carbon nanotube antennas , 2005, IEEE Transactions on Antennas and Propagation.

[191]  Shi Jin,et al.  Programmable metasurface‐based RF chain‐free 8PSK wireless transmitter , 2019, Electronics Letters.

[192]  S. A. Mikhailov,et al.  Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor two-dimensional electron systems , 2011, 1102.5216.

[193]  Ian F. Akyildiz,et al.  Three-Dimensional End-to-End Modeling and Analysis for Graphene-Enabled Terahertz Band Communications , 2017, IEEE Transactions on Vehicular Technology.

[194]  Ian F. Akyildiz,et al.  Femtosecond-Long Pulse-Based Modulation for Terahertz Band Communication in Nanonetworks , 2014, IEEE Transactions on Communications.

[195]  Tianrui Zhai,et al.  Electromagnetic Shielding and Energy Concentration Using Zero-Index Metamaterials , 2011 .

[196]  Ijaz Haider Naqvi,et al.  Frequency band selection and channel modeling for WNSN applications using simplenano , 2013, 2013 IEEE International Conference on Communications (ICC).

[197]  Mahbub Hassan,et al.  eNEUTRAL IoNT: Energy-Neutral Event Monitoring for Internet of Nano Things , 2019, IEEE Internet of Things Journal.

[198]  Chong Han,et al.  Wave Propagation Modeling for mmWave and Terahertz Wireless Networks-on-Chip Communications , 2019, ICC 2019 - 2019 IEEE International Conference on Communications (ICC).

[199]  Michael J. Medley,et al.  Joint Synchronization and Symbol Detection Design for Pulse-Based Communications in the THz Band , 2014, 2015 IEEE Global Communications Conference (GLOBECOM).

[200]  Tao Jin,et al.  Wireless network-on-chip: a survey , 2014 .

[201]  Eduard Alarcón,et al.  A Vertical Methodology for the Design Space Exploration of Graphene-enabled Wireless Communications , 2015, NANOCOM.

[202]  Giuseppe Piro,et al.  Terahertz Communications in Human Tissues at the Nanoscale for Healthcare Applications , 2015, IEEE Transactions on Nanotechnology.

[203]  Giuseppe Piro,et al.  Nano-Sim: simulating electromagnetic-based nanonetworks in the network simulator 3 , 2013, SimuTools.

[204]  Zhi Chen,et al.  A survey on terahertz communications , 2019, China Communications.

[205]  Eduard Alarcón,et al.  Graphene-enabled wireless communication for massive multicore architectures , 2013, IEEE Communications Magazine.

[206]  Ian F. Akyildiz,et al.  Energy and spectrum-aware MAC protocol for perpetual wireless nanosensor networks in the Terahertz Band , 2013, Ad Hoc Networks.

[207]  Akram Alomainy,et al.  Analytical Characterisation of the Terahertz In-Vivo Nano-Network in the Presence of Interference Based on TS-OOK Communication Scheme , 2017, IEEE Access.

[208]  Michele C. Weigle,et al.  Optimizing communication energy consumption in perpetual wireless nanosensor networks , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[209]  Mona Mostafa Hella,et al.  THz imaging and wireless communication using nanotransistor based detectors: From basic physics to first real world applications , 2017, 2017 19th International Conference on Transparent Optical Networks (ICTON).

[210]  Marco Miozzo,et al.  Spectrum-aware channel and PHY layer modeling for ns3 , 2009, VALUETOOLS.

[211]  Falko Dressler,et al.  Towards security in nano-communication: Challenges and opportunities , 2012, Nano Commun. Networks.

[212]  Nadine Akkari Adra,et al.  Grid Based Energy-Aware MAC Protocol for Wireless Nanosensor Network , 2016, 2016 8th IFIP International Conference on New Technologies, Mobility and Security (NTMS).

[213]  Victor C. M. Leung,et al.  Energy-Efficient Prefix-Free Codes for Wireless Nano-Sensor Networks Using OOK Modulation , 2014, IEEE Transactions on Wireless Communications.

[214]  Josep Miquel Jornet,et al.  A joint energy harvesting and consumption model for self-powered nano-devices in nanonetworks , 2012, 2012 IEEE International Conference on Communications (ICC).

[215]  Eduard Alarcón,et al.  Channel Characterization for Chip-scale Wireless Communications within Computing Packages , 2018, 2018 Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS).

[216]  Xiao Lu,et al.  Towards Smart Radio Environment for Wireless Communications via Intelligent Reflecting Surfaces: A Comprehensive Survey , 2019, ArXiv.

[217]  Ian F. Akyildiz,et al.  Distributed Timely Throughput Optimal Scheduling for the Internet of Nano-Things , 2016, IEEE Internet of Things Journal.

[218]  Andreas Pitsillides,et al.  Fault Adaptive Routing in Metasurface Controller Networks , 2018, 2018 11th International Workshop on Network on Chip Architectures (NoCArc).

[219]  Ian F. Akyildiz,et al.  The Internet of nano-things , 2010, IEEE Wireless Communications.

[220]  Sebastian Canovas-Carrasco,et al.  A nanoscale communication network scheme and energy model for a human hand scenario , 2018, Nano Commun. Networks.

[221]  Nikolaus Correll,et al.  Wireless Robotic Materials , 2017, SenSys.

[222]  Ian F. Akyildiz,et al.  The Internet of Multimedia Nano-Things , 2012, Nano Commun. Networks.

[223]  Xin-Wei Yao,et al.  ECP: A Probing-Based Error Control Strategy for THz-Based Nanonetworks With Energy Harvesting , 2019, IEEE Access.

[224]  Hyoukjun Kwon,et al.  Architecting a Secure Wireless Network-on-Chip , 2018, 2018 Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS).

[225]  Emil Björnson,et al.  Power Scaling Laws and Near-Field Behaviors of Massive MIMO and Intelligent Reflecting Surfaces , 2020, IEEE Open Journal of the Communications Society.

[226]  Yevgeni Koucheryavy,et al.  Interference and SINR in Millimeter Wave and Terahertz Communication Systems With Blocking and Directional Antennas , 2017, IEEE Transactions on Wireless Communications.

[227]  D. Moltchanov,et al.  Terahertz band communications: Applications, research challenges, and standardization activities , 2016, 2016 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT).

[228]  Amlan Ganguly,et al.  Scalable and energy efficient wireless inter chip interconnection fabrics using THz-band antennas , 2020, J. Parallel Distributed Comput..

[229]  Yevgeni Koucheryavy,et al.  Wideband Terahertz Band Reflection and Diffuse Scattering Measurements for Beyond 5G Indoor Wireless Networks , 2016 .

[230]  Yue Ping Zhang,et al.  Propagation Mechanisms of Radio Waves Over Intra-Chip Channels With Integrated Antennas: Frequency-Domain Measurements and Time-Domain Analysis , 2007, IEEE Transactions on Antennas and Propagation.

[231]  Nikolaus Correll,et al.  Materials that couple sensing, actuation, computation, and communication , 2015, Science.

[232]  Akram Alomainy,et al.  Modulation Mode Detection and Classification for In Vivo Nano-Scale Communication Systems Operating in Terahertz Band , 2019, IEEE Transactions on NanoBioscience.

[233]  D. R. Chowdhury,et al.  Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales , 2015 .

[234]  Bryan Ng,et al.  On-Demand Probabilistic Polling for Nanonetworks Under Dynamic IoT Backhaul Network Conditions , 2017, IEEE Internet of Things Journal.

[235]  Josep Torrellas,et al.  A MAC protocol for Reliable Broadcast Communications in Wireless Network-on-Chip , 2016, NoCArc'16.

[236]  Yong-Zhong Xiong,et al.  A SiGe BiCMOS Transmitter/Receiver Chipset With On-Chip SIW Antennas for Terahertz Applications , 2012, IEEE Journal of Solid-State Circuits.

[237]  Bryan Ng,et al.  Forwarding Schemes for EM-based Wireless Nanosensor Networks in the Terahertz Band , 2015, NANOCOM.

[238]  Özgür B. Akan,et al.  Minimum Energy Channel Codes for Nanoscale Wireless Communications , 2013, IEEE Transactions on Wireless Communications.

[239]  Ian F. Akyildiz,et al.  Fundamentals of Electromagnetic Nanonetworks in the Terahertz Band , 2013, Found. Trends Netw..

[240]  Emil Björnson,et al.  Intelligent Reflecting Surfaces: Physics, Propagation, and Pathloss Modeling , 2019, IEEE Wireless Communications Letters.

[241]  Sung-Yoon Jung,et al.  Non-Coherent Symbol Detection with TOA Estimation for Nanocommunication Networks , 2019, 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring).

[242]  Mubashir Husain Rehmani,et al.  MAC Protocols for Terahertz Communication: A Comprehensive Survey , 2019, IEEE Communications Surveys & Tutorials.

[243]  J. S. Gomez-Diaz,et al.  Graphene-based Antennas for Terahertz Systems: A Review , 2017, 1704.00371.

[244]  Albert Cabellos-Aparicio,et al.  Use of Terahertz Photoconductive Sources to Characterize Tunable Graphene RF Plasmonic Antennas , 2015, IEEE Transactions on Nanotechnology.

[245]  Josep Miquel Jornet,et al.  PHLAME: A physical layer aware MAC protocol for electromagnetic nanonetworks , 2011, INFOCOM WKSHPS 2011.

[246]  Mahdi H. Miraz,et al.  A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT) , 2015, 2015 Internet Technologies and Applications (ITA).

[247]  Pankaj Singh,et al.  DS-OOK for Terahertz Band Nanonetworks , 2020 .

[248]  Eric Diller,et al.  Biomedical Applications of Untethered Mobile Milli/Microrobots , 2015, Proceedings of the IEEE.

[249]  Mary Ann Weitnauer,et al.  Pulse-level beam-switching for terahertz networks , 2019, Wirel. Networks.

[250]  T. Kurner,et al.  Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives , 2007, IEEE Antennas and Propagation Magazine.

[251]  Subir Biswas,et al.  AH-MAC: Adaptive Hierarchical MAC Protocol for Low-Rate Wireless Sensor Network Applications , 2017, J. Sensors.

[252]  Xianzhong Tian,et al.  Optimal coding for transmission energy minimization in wireless nanosensor networks , 2013, Nano Commun. Networks.

[253]  Yevgeni Koucheryavy,et al.  Capacity and throughput analysis of nanoscale machine communication through transparency windows in the terahertz band , 2014, Nano Commun. Networks.

[254]  Y. Koucheryavy,et al.  The internet of Bio-Nano things , 2015, IEEE Communications Magazine.

[255]  A. B. M. Alim Al Islam,et al.  Energy-efficient transport layer protocol for hybrid communication in body area nanonetworks , 2017, 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC).

[256]  Dominique Dhoutaut,et al.  Bit simulator, an electromagnetic nanonetworks simulator , 2018, NANOCOM.

[257]  Sebastian Ebers,et al.  In-body nanonetwork routing based on MANET and THz , 2018, NANOCOM.

[258]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[259]  Natalie D. Enright Jerger,et al.  Outstanding Research Problems in NoC Design: System, Microarchitecture, and Circuit Perspectives , 2009, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[260]  Tadao Nagatsuma,et al.  Terahertz integrated electronic and hybrid electronic–photonic systems , 2018, Nature Electronics.

[261]  Hannu Tenhunen,et al.  A Low-Overhead, Fully-Distributed, Guaranteed-Delivery Routing Algorithm for Faulty Network-on-Chips , 2015, NOCS.

[262]  Roger A Lewis,et al.  A review of terahertz sources , 2014 .

[263]  Eduard Alarcón,et al.  Computing and Communications for the Software-Defined Metamaterial Paradigm: A Context Analysis , 2018, IEEE Access.

[264]  Ivan Puchades,et al.  Intra- and Inter-Chip Transmission of Millimeter-Wave Interconnects in NoC-Based Multi-Chip Systems , 2019, IEEE Access.

[265]  J. M. Jornet,et al.  Joint Energy Harvesting and Communication Analysis for Perpetual Wireless Nanosensor Networks in the Terahertz Band , 2012, IEEE Transactions on Nanotechnology.

[266]  Sebastian Canovas-Carrasco,et al.  The IEEE 1906.1 Standard: Nanocommunications as a new source of data , 2017, 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITU K).

[267]  G. Hanson,et al.  Wave Propagation Mechanisms for Intra-Chip Communications , 2009, IEEE Transactions on Antennas and Propagation.

[268]  Michele C. Weigle,et al.  Optimizing Energy Consumption in Terahertz Band Nanonetworks , 2014, IEEE Journal on Selected Areas in Communications.

[269]  Jeroen Famaey,et al.  Modeling and Reducing Idling Energy Consumption in Energy Harvesting Terahertz Nanonetworks , 2019, 2019 IEEE Global Communications Conference (GLOBECOM).

[270]  Ian F. Akyildiz,et al.  Design and Development of Software Defined Metamaterials for Nanonetworks , 2015, IEEE Circuits and Systems Magazine.