Lerot: an online learning to rank framework
暂无分享,去创建一个
Katja Hofmann | M. de Rijke | Shimon Whiteson | Maarten de Rijke | Anne Schuth | Anne Schuth | Katja Hofmann | Shimon Whiteson
[1] Katja Hofmann,et al. Contextual Bandits for Information Retrieval , 2011 .
[2] Katja Hofmann,et al. Fast and reliable online learning to rank for information retrieval , 2013, SIGIR Forum.
[3] Katja Hofmann,et al. Reusing historical interaction data for faster online learning to rank for IR , 2013, DIR.
[4] Thorsten Joachims,et al. Making large scale SVM learning practical , 1998 .
[5] Nick Craswell,et al. An experimental comparison of click position-bias models , 2008, WSDM '08.
[6] Yi Chang,et al. Yahoo! Learning to Rank Challenge Overview , 2010, Yahoo! Learning to Rank Challenge.
[7] Katja Hofmann,et al. Information Retrieval manuscript No. (will be inserted by the editor) Balancing Exploration and Exploitation in Listwise and Pairwise Online Learning to Rank for Information Retrieval , 2022 .
[8] Thorsten Joachims,et al. Optimizing search engines using clickthrough data , 2002, KDD.
[9] Tie-Yan Liu,et al. Learning to Rank for Information Retrieval , 2011 .
[10] Filip Radlinski,et al. Evaluating the accuracy of implicit feedback from clicks and query reformulations in Web search , 2007, TOIS.
[11] Thorsten Joachims,et al. Interactively optimizing information retrieval systems as a dueling bandits problem , 2009, ICML '09.
[12] Katja Hofmann,et al. Estimating interleaved comparison outcomes from historical click data , 2012, CIKM '12.
[13] Katja Hofmann,et al. A probabilistic method for inferring preferences from clicks , 2011, CIKM '11.
[14] Katja Hofmann,et al. Evaluating aggregated search using interleaving , 2013, CIKM.
[15] Qiang Yang,et al. Beyond ten blue links: enabling user click modeling in federated web search , 2012, WSDM '12.
[16] Jaana Kekäläinen,et al. Cumulated gain-based evaluation of IR techniques , 2002, TOIS.
[17] Filip Radlinski,et al. How does clickthrough data reflect retrieval quality? , 2008, CIKM '08.
[18] Chao Liu,et al. Efficient multiple-click models in web search , 2009, WSDM '09.
[19] Gregory N. Hullender,et al. Learning to rank using gradient descent , 2005, ICML.
[20] Tong Zhang,et al. Solving large scale linear prediction problems using stochastic gradient descent algorithms , 2004, ICML.
[21] Tao Qin,et al. LETOR: Benchmark Dataset for Research on Learning to Rank for Information Retrieval , 2007 .
[22] Filip Radlinski,et al. Optimized interleaving for online retrieval evaluation , 2013, WSDM.
[24] D. Sculley,et al. Large Scale Learning to Rank , 2009 .
[25] Christos Faloutsos,et al. Tailoring click models to user goals , 2009, WSCD '09.
[26] Thorsten Joachims,et al. Training linear SVMs in linear time , 2006, KDD '06.
[27] ChengXiang Zhai,et al. Evaluation of methods for relative comparison of retrieval systems based on clickthroughs , 2009, CIKM.