An ultrathin invisibility skin cloak for visible light

Wrap-around invisibility cloak An invisibility cloak can be used to conceal an object from view by guiding light around it. Most cloaks developed so far have bulky structures that are difficult to scale up for hiding large objects. To design a thin invisibility cloak that can be wrapped around an object such as a sheet or skin, Ni et al. designed a two-dimensional metamaterial surface. Such flexible, highly reflective materials could be manufactured at large scale to hide large objects. Science, this issue p. 1310 A metamaterial surface can be designed to operate as an invisibility skin cloak. Metamaterial-based optical cloaks have thus far used volumetric distribution of the material properties to gradually bend light and thereby obscure the cloaked region. Hence, they are bulky and hard to scale up and, more critically, typical carpet cloaks introduce unnecessary phase shifts in the reflected light, making the cloaks detectable. Here, we demonstrate experimentally an ultrathin invisibility skin cloak wrapped over an object. This skin cloak conceals a three-dimensional arbitrarily shaped object by complete restoration of the phase of the reflected light at 730-nanometer wavelength. The skin cloak comprises a metasurface with distributed phase shifts rerouting light and rendering the object invisible. In contrast to bulky cloaks with volumetric index variation, our device is only 80 nanometer (about one-ninth of the wavelength) thick and potentially scalable for hiding macroscopic objects.

[1]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[2]  L. Hsu,et al.  Extremely Thin Dielectric Metasurface for Carpet Cloaking , 2015, 1503.08486.

[3]  Andrea Alu,et al.  Ultra-Thin Unidirectional Carpet Cloak and Wavefront Reconstruction With Graded Metasurfaces , 2014, IEEE Antennas and Wireless Propagation Letters.

[4]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[5]  Andrea Alù,et al.  Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions , 2014, Nature.

[6]  Baowen Li,et al.  Experimental demonstration of a bilayer thermal cloak. , 2014, Physical review letters.

[7]  Fei Gao,et al.  Ultrathin three-dimensional thermal cloak. , 2014, Physical review letters.

[8]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[9]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[10]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[11]  George V. Eleftheriades,et al.  Experimental Demonstration of Active Electromagnetic Cloaking , 2013 .

[12]  Sergey I. Bozhevolnyi,et al.  Gap plasmon-based metasurfaces for total control of reflected light , 2013, Scientific Reports.

[13]  E. Hasman,et al.  Spin-Optical Metamaterial Route to Spin-Controlled Photonics , 2013, Science.

[14]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[15]  Vladimir M. Shalaev,et al.  Ultra-thin, planar, Babinet-inverted plasmonic metalenses , 2013, Light: Science & Applications.

[16]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[17]  V. M. García-Chocano,et al.  Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. , 2013, Physical review letters.

[18]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[19]  Qiaofeng Tan,et al.  Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity , 2013, Light: Science & Applications.

[20]  Anders Pors,et al.  Broadband plasmonic half-wave plates in reflection. , 2013, Optics letters.

[21]  R. Fleury,et al.  Quantum cloaking based on scattering cancellation , 2013 .

[22]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[23]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[24]  M. Wegener,et al.  Experiments on transformation thermodynamics: molding the flow of heat. , 2012, Physical review letters.

[25]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[26]  U. Chettiar,et al.  An invisible metal–semiconductor photodetector , 2012, Nature Photonics.

[27]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[28]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[29]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[30]  Xiang Zhang,et al.  A carpet cloak for visible light. , 2011, Nano letters.

[31]  Yu Luo,et al.  Macroscopic invisibility cloaking of visible light , 2010, Nature communications.

[32]  G. Barbastathis,et al.  Macroscopic invisibility cloak for visible light. , 2010, Physical review letters.

[33]  T. Cui,et al.  Three-dimensional broadband ground-plane cloak made of metamaterials , 2010, Nature communications.

[34]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[35]  A. Alú,et al.  Mantle cloak: Invisibility induced by a surface , 2009 .

[36]  Mohamed Farhat,et al.  Ultrabroadband elastic cloaking in thin plates. , 2009, Physical review letters.

[37]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[38]  X. Zhang,et al.  Dielectric Optical Cloak , 2009, 0904.3602.

[39]  M. Lipson,et al.  Silicon nanostructure cloak operating at optical frequencies , 2009, 0904.3508.

[40]  Alexander B. Movchan,et al.  Achieving control of in-plane elastic waves , 2008, 0812.0912.

[41]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[42]  Shuang Zhang,et al.  Cloaking of matter waves. , 2008, Physical review letters.

[43]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[44]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[45]  J. Willis,et al.  On cloaking for elasticity and physical equations with a transformation invariant form , 2006 .

[46]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[47]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[48]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .