RESIDUOS AGROINDUSTRIALES COMO ADICIONES EN LA ELABORACIÓN DE BLOQUES DE CONCRETO NO ESTRUCTURAL

The introduction of industrial waste as a substitute for cement in organic building blocks makes it possible a broad environmental, social and economic development. In this research ecological blocks were made with commercial dimensions at industrial level, in which a percentage of the cement content was replaced with rice husk, rice husk ashes and fly ash (characterized by tests of particle size, unit weight and moisture ) in 10, 15 and 20 %; keeping the amount of mixing water and sand block constant. The obtained organic blocks were mechanically analyzed, and the compressive strength was determined, obtaining average results of 0.585 MPa, 0.743 MPa and 0.956 MPa for rice husk, rice husk ash and fly ash respectively at 7, 28 and 45 days of curing. Those resistances were compared with the reference100 % cement block, resulting in 0.802 MPa, in order to observe cementitious characteristics of the additions, which greatly affect the eco-block resistance. Through the results obtained, it was concluded that the optimum addition rate is 15 % of ashes from thermal power plants at 28 days of curing, as a partial replacement of cement in concrete blocks. Although there is a decrease in resistance compression and tension in some cases, it is feasible using additions in the making of concrete blocks as an effective proposal for reusing those wastes and lead towards the development of technical, economic and environmentally competitive materials.

[1]  C. P. G. Cuervo,et al.  Obtención y caracterización de geopolímeros, sintetizados a partir de ceniza volante y piedra pómez, utilizados para el desarrollo y mejoramiento del concreto , 2012 .

[2]  Idalberto Águila,et al.  Evaluación físico químico de cenizas de cascarilla de arroz, bagazo de caña y hoja de maíz y su influencia en mezclas de mortero, como materiales puzolánicos , 2008 .

[3]  María Cabo Laguna Ladrillo ecológico como material sostenible para la construcción , 2011 .

[4]  Marina Alvarez Alonso,et al.  Elementos prefabricados de hormigón con cenizas volantes , 1991 .

[5]  Ernst Worrell,et al.  Emission Reduction of Greenhouse Gases from the Cement Industry , 2003 .

[6]  Erich D. Rodríguez,et al.  Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends , 2011, Journal of Materials Science.

[7]  Ingeniero Químico,et al.  ANALISIS DEL COMPORTAMIENTO MECANICO DEL CEMENTO HIDRAULICO ADICIONADO CON CENIZAS VOLANTES PROVENIENTES DE LA CENTRAL DE GENERACION TERMICA DE TERMOPAIPA , 2012 .

[8]  E. Baquero,et al.  EVALUATION OF THE POZZOLANIC ACTIVITY OF FLUID CATALYTIC CRACKING RESIDUE , 2009 .

[9]  O. Bas,et al.  La influencia de las cenizas volantes como sustituto parcial del cemento Pórtland en la durabilidad del hormigón: propiedades físicas, difusión del ión cloruro y del dióxido de carbono , 2008 .

[10]  Min-hong Zhang,et al.  Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash , 2001 .

[11]  Muhammad Fauzi Mohd. Zain,et al.  Production of rice husk ash for use in concrete as a supplementary cementitious material , 2011 .

[12]  J. Monzó,et al.  LIGHTWEIGHT MORTARS WITH RICE HUSK: MIX DESIGN AND PROPERTIES EVALUATION , 2012 .

[13]  Rodrigo Salamanca Correa,et al.  Comportamiento del concreto con bajos porcentajes de ceniza volante (Termopaipa IV) y agua constante , 2004 .

[14]  David Quiceno Villada,et al.  Alternativas tecnológicas para el uso de la cascarilla de arroz como combustible , 2010 .

[15]  Jaider Sierra Aguilar Alternativas de aprovechamiento de la cascarilla de arroz en Colombia , 2010 .

[16]  Kunal,et al.  Strength, permeability and microstructure of self-compacting concrete containing rice husk ash , 2015 .