On the distance to singularity via low rank perturbations

For regular matrix pencils the distance in norm to the nearest singular pencil under low rank perturbation is studied. Characterizations of this distance are derived via the Weyl function of the perturbation. Special attention is paid to the Hermitian pencil case. Estimates for the distance of a given pencil to the set of singular pencils are obtained.

[1]  J. Willems,et al.  On Differential Algebraic Systems , 1995 .

[2]  S. V. Savchenko Typical Changes in Spectral Properties under Perturbations by a Rank-One Operator , 2003 .

[3]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[4]  Tosio Kato Perturbation theory for linear operators , 1966 .

[5]  Harold R. Parks,et al.  A Primer of Real Analytic Functions , 1992 .

[6]  Nicholas J. Higham,et al.  Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[7]  René Lamour,et al.  Differential-Algebraic Equations: A Projector Based Analysis , 2013 .

[8]  Volker Mehrmann,et al.  Where is the nearest non-regular pencil? , 1998 .

[9]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[10]  A.C.M. Ran,et al.  Eigenvalues of rank one perturbations of unstructured matrices , 2011, 1104.0618.

[11]  F. Terán,et al.  Low rank perturbation of regular matrix polynomials , 2009 .

[12]  R. Glowinski,et al.  Numerical methods for multibody systems , 1994 .

[13]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  Linda R. Petzold,et al.  Differential-algebraic equations , 2008, Scholarpedia.

[16]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[17]  Froilán M. Dopico,et al.  First order spectral perturbation theory of square singular matrix pencils , 2008 .

[18]  Сергей Валерьевич Савченко,et al.  Об изменении спектральных свойств матрицы при возмущении достаточно низкого ранга@@@On the Change in the Spectral Properties of a Matrix under Perturbations of Sufficiently Low Rank , 2004 .

[19]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[20]  R. C. Thompson,et al.  The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil , 1976 .

[21]  S. V. Savchenko On the Perron roots of principal submatrices of co-order one of irreducible nonnegative matrices , 2003 .

[22]  P. Lancaster,et al.  Indefinite Linear Algebra and Applications , 2005 .