Impact of left bundle branch block on myocardial perfusion and metabolism: A positron emission tomography study

[1]  J. Nuyts,et al.  Left Ventricular Remodeling Results in Homogenization of Myocardial Work Distribution. , 2019, Circulation. Arrhythmia and electrophysiology.

[2]  J. Nuyts,et al.  Partial volume and motion correction in cardiac PET: First results from an in vs ex vivo comparison using animal datasets , 2019, Journal of Nuclear Cardiology.

[3]  J. Nielsen,et al.  ESC Guidelines on cardiac pacing and cardiac resynchronization therapy , 2014 .

[4]  Jens-Uwe Voigt,et al.  Dynamic relationship of left-ventricular dyssynchrony and contractile reserve in patients undergoing cardiac resynchronization therapy. , 2014, European heart journal.

[5]  Lluís Mont,et al.  2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: the task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). , 2013, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[6]  Lluís Mont,et al.  2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). , 2013, European heart journal.

[7]  Pier Giorgio Masci,et al.  Myocardial Structural, Perfusion, and Metabolic Correlates of Left Bundle Branch Block Mechanical Derangement in Patients With Dilated Cardiomyopathy: A Tagged Cardiac Magnetic Resonance and Positron Emission Tomography Study , 2010, Circulation. Cardiovascular imaging.

[8]  C. Wyss,et al.  Left bundle branch block causes relative but not absolute septal underperfusion during exercise. , 2009, European heart journal.

[9]  S. Umemura,et al.  Reverse perfusion-metabolism mismatch predicts good prognosis in patients undergoing cardiac resynchronization therapy: a pilot study. , 2007, Circulation journal : official journal of the Japanese Circulation Society.

[10]  Theo Arts,et al.  Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion. , 2005, European heart journal.

[11]  M. Götte,et al.  Effects of Cardiac Resynchronization Therapy on Myocardial Perfusion Reserve , 2004, Circulation.

[12]  W. Burchert,et al.  Myocardial oxygen consumption and perfusion before and after cardiac resynchronization therapy: experimental observations and clinical implications , 2004 .

[13]  B. Nowak,et al.  Comparison of regional myocardial blood flow and perfusion in dilated cardiomyopathy and left bundle branch block: role of wall thickening. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[14]  J. Nuyts,et al.  Metabolism of nitrogen-13 labelled ammonia in different conditions in dogs, human volunteers and transplant patients , 1995, European Journal of Nuclear Medicine.

[15]  B. Nowak,et al.  Cardiac resynchronization therapyhomogenizes myocardial glucosemetabolism and perfusion in dilatedcardiomyopathy and left bundle branch block , 2003 .

[16]  B. Nowak,et al.  Cardiac resynchronization therapy homogenizes myocardial glucose metabolism and perfusion in dilated cardiomyopathy and left bundle branch block. , 2003, Journal of the American College of Cardiology.

[17]  P. Zanco,et al.  Effect of biventricular pacing on metabolism and perfusion in patients affected by dilated cardiomyopathy and left bundle branch block: evaluation by positron emission tomography. , 2003, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[18]  M. Lauer,et al.  Complete bundle branch block as an independent predictor of all-cause mortality: report of 7,073 patients referred for nuclear exercise testing. , 2001, The American journal of medicine.

[19]  E. Milan,et al.  Effects of left bundle branch block on myocardial FDG PET in patients without significant coronary artery stenoses. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[20]  M E Phelps,et al.  Quantification of myocardial blood flow using 13N-ammonia and PET: comparison of tracer models. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[21]  J. Nuyts,et al.  PET scan predicts recovery of left ventricular function after coronary artery bypass operation. , 1997, The Annals of thoracic surgery.

[22]  T. Turkington,et al.  Estimation of myocardial blood flow for longitudinal studies with 13N-labeled ammonia and positron emission tomography , 1996, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[23]  M. Maisey,et al.  The use of low-dose intravenous insulin in clinical myocardial F-18 FDG PET scanning. , 1996, Clinical nuclear medicine.

[24]  小野 晋司 Regional myocardial perfusion and glucose metabolism in experimental left bundle branch block , 1993 .

[25]  R. Nohara,et al.  Regional Myocardial Perfusion and Glucose Metabolism in Experimental Left Bundle Branch Block , 1992, Circulation.

[26]  P Suetens,et al.  Delineation of ECT images using global constraints and dynamic programming. , 1991, IEEE transactions on medical imaging.

[27]  R Guzzardi,et al.  Simultaneous in vitro and in vivo validation of nitrogen-13-ammonia for the assessment of regional myocardial blood flow. , 1990, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[28]  D E Kuhl,et al.  Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. , 1990, Journal of the American College of Cardiology.

[29]  M. Schwaiger,et al.  Measurement of regional myocardial blood flow with N-13 ammonia and positron-emission tomography in intact dogs. , 1985, Journal of the American College of Cardiology.

[30]  D. Kuhl,et al.  N‐13 Ammonia as an Indicator of Myocardial Blood Flow , 1981, Circulation.