ADX: a high field, high power density, advanced divertor and RF tokamak

The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ∼ 1.5 MW m−2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma–material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv:1409.3540)) that makes use of high-temperature superconductor technology—a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.

Joseph V. Minervini | P. Titus | M. V. Umansky | P. T. Bonoli | S. J. Wukitch | W. Beck | J. Doody | R. F. Vieira | Dennis G. Whyte | Brian Labombard | M. Porkolab | A. E. Hubbard | Jerry Hughes | Prashant M. Valanju | Christian Theiler | J. L. Terry | Dan Brunner | Martin Greenwald | Francesca Poli | Robert S. Granetz | R. R. Parker | D. Terry | Richard E. Nygren | Ian H. Hutchinson | Bruce Lipschultz | E. S. Marmar | Gregory Marriner Wallace | Mike Kotschenreuther | C. E. Kessel | M. L. Reinke | R. Leccacorvi | Robert Mumgaard | Stewart J. Zweben | T. Golfinopoulos | Z. S. Hartwig | William L. Rowan | S. Shiraiwa | Anne E. White | Seung Gyou Baek | James R. Wilson | C. Kessel | J. Rice | P. Bonoli | A. Hubbard | M. Porkolab | M. Greenwald | T. Rognlien | J. Freidberg | B. Lipschultz | R. Ellis | G. Wright | P. Valanju | I. Hutchinson | R. Granetz | S. Zweben | J. Irby | B. LaBombard | S. Shiraiwa | D. Brunner | S. Baek | A. White | J. Minervini | M. Kotschenreuther | B. LaBombard | R. Parker | C. Fiore | J. Terry | E. Marmar | C. Theiler | S. Wukitch | F. Poli | J. Hughes | Y. Lin | M. Umansky | M. Reinke | R. Granetz | D. Ernst | R. Mumgaard | Z. Hartwig | W. Beck | T. Golfinopoulos | P. Titus | Swadesh M Mahajan | T. D. Rognlien | Jeffrey P. Freidberg | R. A. Ellis | Yi-bing Lin | Catherine L. Fiore | James H. Irby | John R. Rice | P. Titus | Yu-Ming Lin | W. Rowan | D. Terry | J. Walk | S. Wolfe | J. R. Walk | G. M. Wright | D. R. Ernst | S. Wolfe | R. Leccacorvi | J.R. Wilson | G. Wallace | J. Doody | S. Mahajan | D. Whyte | R. Nygren | R. Vieira | R. Mumgaard | James R. Wilson | Dan Brunner | J. L. Terry | Anne White | Martin Greenwald | S. M. Mahajan | R. Nygren | S. Zweben | D. Whyte | Gregory Wallace | Joseph Minervini | M. Porkolab | M. Reinke | F. Poli | R. Ellis | I. H. Hutchinson | Rui Vieira | S. Wolfe | J. Hughes

[1]  R. Churchill,et al.  Multi-device studies of pedestal physics and confinement in the I-mode regime , 2016 .

[2]  D. Ryutov,et al.  Corrigendum: The ‘churning mode’ of plasma convection in the tokamak divertor region (2014 Phys. Scr. 89 088002) , 2015 .

[3]  Richard J. Groebner,et al.  Super H-mode: theoretical prediction and initial observations of a new high performance regime for tokamak operation , 2015, Nuclear Fusion.

[4]  P. Bonoli,et al.  High density LHRF experiments in Alcator C-Mod and implications for reactor scale devices , 2015 .

[5]  Youssef M. Marzouk,et al.  Improved profile fitting and quantification of uncertainty in experimental measurements of impurity transport coefficients using Gaussian process regression , 2015 .

[6]  P. Bonoli,et al.  ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets , 2014, 1409.3540.

[7]  B. P. Duval,et al.  20 years of research on the Alcator C-Mod tokamak , 2014 .

[8]  P. Bonoli Novel Reactor Relevant RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies , 2014 .

[9]  Gerd Vandersteen,et al.  Estimation of the thermal diffusion coefficient in fusion plasmas taking frequency measurement uncertainties into account , 2014 .

[10]  D. Ryutov,et al.  The ‘churning mode’ of plasma convection in the tokamak divertor region , 2014 .

[11]  S. Wolfe,et al.  External excitation of a short-wavelength fluctuation in the Alcator C-Mod edge plasma and its relationship to the quasi-coherent modea) , 2014 .

[12]  K. Tritz,et al.  Observation of EHO in NSTX and theoretical study of its active control using HHFW antenna , 2014 .

[13]  Paul T. Bonoli,et al.  Review of recent experimental and modeling progress in the lower hybrid range of frequencies at ITER relevant parameters , 2014 .

[14]  S. Coda,et al.  Power exhaust in the snowflake divertor for L- and H-mode TCV tokamak plasmas , 2014 .

[15]  J. Decker,et al.  Effect of Density Fluctuations in the Scrape-Off Layer on the Lower Hybrid Power Spectrum , 2014 .

[16]  P. Bonoli,et al.  Development of lower hybrid current drive actuators for reactor relevant conditions , 2014 .

[17]  B. Lipschultz,et al.  ICRF-enhanced plasma potentials in the SOL of Alcator C-Mod , 2014 .

[18]  R. Lanza,et al.  An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices. , 2013, The Review of scientific instruments.

[19]  R. A. Pitts Physics Basis and Design of the ITER Full Tungsten Divertor , 2013 .

[20]  P. Bonoli,et al.  X-point target divertor concept and the Alcator DX high power divertor test facility , 2013 .

[21]  James R. Wilson,et al.  Progress towards steady-state regimes in Alcator C-Mod , 2013 .

[22]  D. A. Humphreys,et al.  An overview of KSTAR results , 2013 .

[23]  Makowski,et al.  DIII-D research towards resolving key issues for ITER and steady-state tokamaks , 2013 .

[24]  S. Malang,et al.  ARIES-ACT1 Power Core Engineering , 2013 .

[25]  J. Contributors,et al.  Scaling of the tokamak near the scrape-off layer H-mode power width and implications for ITER , 2013 .

[26]  B. Lipschultz,et al.  Design of the C-Mod Advanced Outer Divertor , 2013, 2013 IEEE 25th Symposium on Fusion Engineering (SOFE).

[27]  S. J. Wukitch,et al.  Characterization and performance of a field aligned ion cyclotron range of frequency antenna in Alcator C-Moda) , 2013 .

[28]  P. Bonoli,et al.  Measurements of ion cyclotron parametric decay of lower hybrid waves at the high-field side of Alcator C-Mod , 2013 .

[29]  I. Hutchinson,et al.  Transport and drift-driven plasma flow components in the Alcator C-Mod boundary plasma , 2013 .

[30]  C. Kessel,et al.  Summary of the ARIES Town Meeting: ‘Edge Plasma Physics and Plasma Material Interactions in the Fusion Power Plant Regime’ , 2013 .

[31]  H. Zohm,et al.  Calculation of Realistic Snowflake Equilibria for Next-Step Devices , 2013 .

[32]  C. Kessel,et al.  Corrigendum: Summary of the ARIES Town Meeting: ‘Edge Plasma Physics and Plasma Material Interactions in the Fusion Power Plant Regime’ , 2013 .

[33]  J. Schweinzer,et al.  Optimized tokamak power exhaust with double radiative feedback in ASDEX Upgrade , 2012 .

[34]  R. H. Bulmer,et al.  Sustained Spheromak Physics Experiment (SSPX): design and physics results , 2012 .

[35]  Chase N. Taylor,et al.  Recent progress in the NSTX/NSTX-U lithium programme and prospects for reactor-relevant liquid-lithium based divertor development , 2012 .

[36]  T. Schwarz-Selinger,et al.  Measuring the difference between gross and net erosion , 2012 .

[37]  James R. Wilson,et al.  The effects of the scattering by edge plasma density fluctuations on lower hybrid wave propagation , 2012 .

[38]  M. V. Umansky,et al.  Snowflake divertor configuration studies in National Spherical Torus Experimenta) , 2012 .

[39]  Characterization of the pedestal in Alcator C-Mod ELMing H-modes and comparison with the EPED model , 2012 .

[40]  John R. Terry,et al.  Tungsten nano-tendril growth in the Alcator C-Mod divertor , 2012 .

[41]  P. T. Bonoli,et al.  Reactor similarity for plasma–material interactions in scaled-down tokamaks as the basis for the Vulcan conceptual design , 2012 .

[42]  P. Bonoli,et al.  The lower hybrid current drive system for steady-state operation of the Vulcan tokamak conceptual design , 2012 .

[43]  P. T. Bonoli,et al.  Vulcan: A steady-state tokamak for reactor-relevant plasma–material interaction science , 2012 .

[44]  P. Barabaschi,et al.  Fusion electricity: a roadmap to the realization of fusion energy , 2012 .

[45]  H. R. Wilson,et al.  A first-principles predictive model of the pedestal height and width: development, testing and ITER optimization with the EPED model , 2011 .

[46]  James R. Wilson,et al.  Design, and initial experiment results of a novel LH launcher on Alcator C-Mod , 2011 .

[47]  N. W. Eidietis,et al.  Overview of KSTAR initial operation , 2011 .

[48]  R. D. Stambaugh,et al.  A fusion development facility on the critical path to fusion energy , 2011 .

[49]  C. Neumeyer,et al.  Overview of the physics and engineering design of NSTX upgrade , 2011, 2011 IEEE/NPSS 24th Symposium on Fusion Engineering.

[50]  A. W. Morris,et al.  MAST: Results and upgrade activities , 2011, 2011 IEEE/NPSS 24th Symposium on Fusion Engineering.

[51]  P. C. Stangeby,et al.  Obtaining reactor-relevant divertor conditions in tokamaks , 2011 .

[52]  S. J. Wukitch,et al.  High confinement/high radiated power H-mode experiments in Alcator C-Mod and consequences for International Thermonuclear Experimental Reactor (ITER) QDT = 10 operationa) , 2011 .

[53]  Said I. Abdel-Khalik,et al.  Recent US activities on advanced He-cooled W-alloy divertor concepts for fusion power plants , 2011 .

[54]  P. Barabaschi,et al.  Status and prospect of the JT-60SA project , 2010 .

[55]  J-M Moret,et al.  "Snowflake" H mode in a tokamak plasma. , 2010, Physical review letters.

[56]  Naoto Tsujii,et al.  I-mode: an H-mode energy confinement regime with L-mode particle transport in Alcator C-Mod , 2010 .

[57]  S. J. Wukitch,et al.  Absorption of lower hybrid waves in the scrape off layer of a diverted tokamak , 2010 .

[58]  J. Rice,et al.  Rotation and transport in Alcator C-Mod ITB plasmas , 2010 .

[59]  Faa Federico Felici,et al.  Snowflake divertor plasmas on TCV , 2009 .

[60]  P. Valanju,et al.  Super-X divertors and high power density fusion devices , 2009 .

[61]  J. Rice,et al.  Observation of ion cyclotron range of frequencies mode conversion plasma flow drive on Alcator C-Mod , 2009 .

[62]  Kaname Ikeda,et al.  ITER on the road to fusion energy , 2009 .

[63]  G. Ambrosino,et al.  Power and particle fluxes at the plasma edge of ITER: Specifications and Physics Basis , 2009 .

[64]  J. Rice,et al.  Observation of ion-cyclotron-frequency mode-conversion flow drive in tokamak plasmas. , 2008, Physical review letters.

[65]  D. Ryutov Erratum: “Geometrical properties of a ‘snowflake’ divertor” [Phys. Plasmas 14, 064502 (2007)] , 2008 .

[66]  R. Granetz,et al.  Design, installation and commissioning of the upper divertor cryopump system in Alcator C-Mod , 2008 .

[67]  J. S. deGrassie,et al.  RMP ELM suppression in DIII-D plasmas with ITER similar shapes and collisionalities , 2008 .

[68]  S. T. Wu,et al.  An overview of the EAST project , 2007 .

[69]  D. Ryutov Geometrical properties of a “snowflake” divertor , 2007 .

[70]  B. Lipschultz,et al.  Divertor Physics Research on Alcator C-Mod , 2007 .

[71]  W. Beck,et al.  Alcator C-Mod Design, Engineering, and Disruption Research , 2007 .

[72]  J. Rice,et al.  Confinement and Transport Research in Alcator C-Mod , 2007 .

[73]  C. C. Kung,et al.  Wave-Particle Studies in the Ion Cyclotron and Lower Hybrid Ranges of Frequencies in Alcator C-Mod , 2007 .

[74]  J. Li,et al.  Overview of plasma-facing materials and components for EAST , 2007 .

[75]  D. Ryutov Geometrical Properties of a "Snow-Flake" Divertor , 2007 .

[76]  P. T. Bonoli,et al.  Sawtooth period changes with mode conversion current drive on Alcator C-Mod , 2007 .

[77]  P. Valanju,et al.  On heat loading, novel divertors, and fusion reactors , 2006 .

[78]  B. Lipschultz Operation of Alcator C-Mod with high-Z plasma facing components and implications , 2005 .

[79]  L. L. Lao,et al.  Advances in understanding quiescent H-mode plasmas in DIII-D , 2005 .

[80]  Brian Labombard,et al.  Transport-driven Scrape-Off-Layer flows and the boundary conditions imposed at the magnetic separatrix in a tokamak plasma , 2004 .

[81]  B. Lipschultz,et al.  Interpretation of the Dα emission from the high field side of Alcator C-Mod , 2004 .

[82]  P. T. Bonoli,et al.  Investigation of performance limiting phenomena in a variable phase ICRF antenna in Alcator C-Mod , 2004 .

[83]  C. Gormezano,et al.  A review of internal transport barrier physics for steady-state operation of tokamaks , 2004 .

[84]  Y Lin,et al.  Investigation of performance limiting phenomena in a variable phase ICRF antenna in Alcator C-Mod , 2004 .

[85]  T. Petrie,et al.  The role of magnetic geometry on the poloidal distribution of ELM-induced peak particle flux at the divertor targets in DIII-D , 2003 .

[86]  M Porkolab,et al.  Experimental observations of mode-converted ion cyclotron waves in a tokamak plasma by phase contrast imaging. , 2003, Physical review letters.

[87]  Dale M. Meade,et al.  FIRE, A Next Step Option for Magnetic Fusion , 2002 .

[88]  F. Milani,et al.  Towards fully non-inductive current drive operation in JET , 2002 .

[89]  J. L. Luxon,et al.  A design retrospective of the DIII-D tokamak , 2002 .

[90]  W. West,et al.  Blobby cross-field plasma transport in tokamak edge , 2002 .

[91]  P. T. Bonoli,et al.  Modelling of advanced tokamak scenarios with LHCD in Alcator C-Mod , 2000 .

[92]  C. Bourdelle,et al.  Measurement of central toroidal rotation in ohmic Tore Supra plasmas , 2000 .

[93]  E. D. Fredrickson,et al.  ICRF heating and profile control techniques in TFTR , 2000 .

[94]  D. J. Campbell,et al.  Chapter 1: Overview and summary , 1999 .

[95]  A. Kukushkin,et al.  Stability of the detachment front in a tokamak divertor , 1999 .

[96]  R. Neu,et al.  Conclusions about the use of tungsten in the divertor of ASDEX Upgrade , 1999 .

[97]  J. Rice,et al.  Observations of central toroidal rotation in ICRF heated Alcator C-Mod plasmas , 1998 .

[98]  B. Lipschultz,et al.  Impurity screening in Ohmic and high confinement (H-mode) plasmas in the Alcator C-Mod tokamak , 1997 .

[99]  Ian H. Hutchinson,et al.  Similarity in divertor studies , 1996 .

[100]  R. W. Harvey,et al.  Calculation of the current drive in DIII-D with GENRAY ray tracing code , 1995 .

[101]  V. Erckmann,et al.  Electron cyclotron resonance heating and current drive in toroidal fusion plasmas , 1994 .

[102]  I. Hutchinson Thermal front analysis of detached divertors and MARFEs , 1994 .

[103]  R. W. Harvey,et al.  The CQL3D Fokker-Planck code , 1992 .

[104]  R. S. Devoto,et al.  Numerical analysis of 2D MHD equilibrium with non-inductive plasma current in tokamaks , 1992 .

[105]  R. Gruber,et al.  MHD-limits to plasma confinement , 1984 .