Zero-error dissimilarity based classifiers

We consider general non-Euclidean distance measures between real world objects that need to be classified. It is assumed that objects are represented by distances to other objects only. Conditions for zero-error dissimilarity based classifiers are derived. Additional conditions are given under which the zero-error decision boundary is a continues function of the distances to a finite set of training samples. These conditions affect the objects as well as the distance measure used. It is argued that they can be met in practice.