Extraction of mineral absorption features from high - spectral resolution data using non - parametric geostatistical techniques

Abstract High spectral resolution images (AVIRIS) providing detailed information on the surfaced mineralogy have been used to evaluate a new indicator kriging based absorption feature extraction technique for mineral mapping exploiting the spectral characteristics of image pixel spectra in comparison with laboratory spectra of minerals. Raw radiance image data from the 1989 Cuprite Mining data set were corrected for atmospheric influence and solar irradiance drop off reducing the data to reflectance using the Empirical Line method. A new technique for mineral mapping is presented based on ordinary indicator kriging. The approach directly uses mineral spectra by defining key bands on shoulders and centres of absorption features which are automatically detected from image spectra using statistical zonation techniques. The image data of selected spectral bands are transformed into binary (0,1) images: the pixel value becoming I if the pixel DN value falls within upper and lower limits characterizing the mine...

[1]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[2]  J. D. Testerman,et al.  A Statistical Reservoir-Zonation Technique , 1962 .

[3]  G. Schaber,et al.  Subsurface Valleys and Geoarcheology of the Eastern Sahara Revealed by Shuttle Radar , 1982, Science.

[4]  A. Goetz,et al.  Geologic remote sensing. , 1981, Science.

[5]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[6]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[7]  A. F. H. Goetz,et al.  Mineralogical Mapping in the Cuprite Mining District, Nevada , 1985 .

[8]  Wallace M. Porter,et al.  The airborne visible/infrared imaging spectrometer (AVIRIS) , 1993 .

[9]  J. Boardman,et al.  Mineral mapping at Cuprite, Nevada with a 63-channel imaging spectrometer , 1990 .

[10]  Michael Abrams,et al.  Alteration mapping using multispectral images; Cuprite mining district, Esmeralda County, Nevada , 1980 .

[11]  A. Journel Nonparametric estimation of spatial distributions , 1983 .

[12]  A. Goetz,et al.  Terrestrial imaging spectroscopy , 1988 .

[13]  Anne B. Kahle,et al.  Mapping of hydrothermal alteration in the Cuprite mining district, Nevada, using aircraft scanner images for the spectral region 0.46 to 2.36µm , 1977 .

[14]  S. Altaner,et al.  Near infrared detection of ammonium minerals. , 1987 .

[15]  D. Gill Application of a Statistical Zonation Method to Reservoir Evaluation and Digitized-Log Analysis , 1970 .

[16]  C. Elvidge Vegetation reflectance features in AVIRIS data , 1988 .

[17]  David Michel,et al.  Geostatistical Ore Reserve Estimation , 1977 .

[18]  Freek D. van der Meer,et al.  Calibration of airborne visible - infrared imaging spectrometer data, AVIRIS to reflectance and mineral mapping in hydrothermal alteration zones : an example from the Cuprite mining district , 1994 .

[19]  Freek D. van der Meer,et al.  Shape analysis and multispectral classification in geological remote sensing , 1993 .

[20]  M. D. Craig,et al.  Analysis of aircraft spectrometer data with logarithmic residuals , 1985 .

[21]  Richard Webster,et al.  Automatic soil-boundary location from transect data , 1973 .

[22]  A F Goetz,et al.  Mineral Identification from Orbit: Initial Results from the Shuttle Multispectral Infrared Radiometer , 1982, Science.

[23]  G. Hunt Visible and near-infrared spectra of minerals and rocks : I silicate minerals , 1970 .

[24]  H. W. Van der Marel,et al.  Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures , 1976 .