On the feasibility of colored glazed thermal solar collectors based on thin film interference filters

Glazed thermal solar collectors, typically equipped with black, optical selective absorber sheets, exhibit good energy conversion efficiency. However, the black color, and sometimes the visibility of tubes and corrugations of the metal sheets, limit the architectural integration into buildings. In order to overcome this drawback, interference filters are considered as a promising approach. Multilayered thin film stacks deposited on the cover glass can produce a colored reflection hiding the black absorber without a great loss of energy. These interference filters are designed and optimized by numerical simulation. Such coatings are deposited by vacuum processes (e.g. magnetron sputtering) and also via the SolGel method. Optical measurements, such as real-time laser-reflectometry and spectrophotometry, are suitable to determine film thicknesses and optical constants of individual layers, and to measure color coordinates and solar transmittance for the multilayer stacks. Advantages and disadvantages of the different coating processes are discussed.

[1]  Z. Knittl,et al.  Optics of Thin Films , 1977 .

[2]  Z. C. Orel,et al.  Spectrally selective paint coatings: Preparation and characterization , 2001 .

[3]  O. S. Heavens,et al.  Optical Properties of Thin Solid Films , 2011 .

[4]  Y. Tripanagnostopoulos,et al.  Solar collectors with colored absorbers , 2000 .

[5]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[6]  C. Hecht,et al.  Large-area production of solar absorbent multilayers by MF-pulsed plasma technology , 2000 .

[7]  Jean-Louis Scartezzini,et al.  ANIDOLIC DAYLIGHTING SYSTEMS , 2002 .

[8]  P. Oelhafen,et al.  In situ photoelectron spectroscopy of titanium-containing amorphous hydrogenated carbon films , 1999 .

[9]  Wolfgang Graf,et al.  Development of large area sputtered solar absorber coatings , 1997 .

[10]  P. Sheng Theory for the Dielectric Function of Granular Composite Media , 1980 .

[11]  L. Holland,et al.  Vacuum deposition of thin films , 1956 .

[12]  W. Spirkl,et al.  Optical constants and film density of TiNxOy solar selective absorbers , 1995 .

[13]  Andreas Schüler,et al.  Titanium containing amorphous hydrogenated silicon carbon films (a-Si:C:H/Ti) for durable solar absorber coatings , 2001 .

[14]  Andreas Schüler,et al.  Application of titanium containing amorphous hydrogenated carbon films (a-C:H/Ti) as optical selective solar absorber coatings , 2000 .

[15]  Boris Orel,et al.  Sol–gel derived CuCoMnOx spinel coatings for solar absorbers: Structural and optical properties , 2001 .

[16]  C. Brinker Sol-gel science , 1990 .

[17]  C. Riordan,et al.  Spectral solar irradiance data sets for selected terrestrial conditions , 1985 .

[18]  P. Oelhafen,et al.  Optical properties of titanium containing amorphous hydrogenated carbon films (a-C:H/Ti) , 2000 .

[19]  G. Niklasson,et al.  Surfaces for selective absorption of solar energy: an annotated bibliography 1955–1981 , 1983 .

[20]  Anne Grete Hestnes,et al.  Building Integration Of Solar Energy Systems , 1999 .

[21]  P. Affolter,et al.  PV building lements , 1995 .

[22]  W. Welford Principles of optics (5th Edition): M. Born, E. Wolf Pergamon Press, Oxford, 1975, pp xxviii + 808, £9.50 , 1975 .

[23]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[24]  Helmut K. Schmidt,et al.  Interference coatings on glass based on photopolymerizable nanomer material , 1999 .

[25]  J. Scartezzini,et al.  Multilayered Al2O3/SiO2 and TiO2/SiO2 coatings for glazed colored solar thermal collectors , 2005 .