Statistical Uncertainty Analysis for Stochastic Simulation

When we use simulation to evaluate the performance of a stochastic system, the simulation often contains input distributions estimated from real-world data; therefore, there is both simulation and input uncertainty in the performance estimates. Ignoring either source of uncertainty underestimates the overall statistical error. Simulation uncertainty can be reduced by additional computation (e.g., more replications). Input uncertainty can be reduced by collecting more real-world data, when feasible. This paper proposes an approach to quantify overall statistical uncertainty when the simulation is driven by independent parametric input distributions; specifically, we produce a confidence interval that accounts for both simulation and input uncertainty by using a metamodel-assisted bootstrapping approach. The input uncertainty is measured via bootstrapping, an equation-based stochastic kriging metamodel propagates the input uncertainty to the output mean, and both simulation and metamodel uncertainty are derived using properties of the metamodel. A variance decomposition is proposed to estimate the relative contribution of input to overall uncertainty; this information indicates whether the overall uncertainty can be significantly reduced through additional simulation alone. Asymptotic analysis provides theoretical support for our approach, while an empirical study demonstrates that it has good finite-sample performance.

[1]  Barry L. Nelson,et al.  Stochastic kriging for simulation metamodeling , 2008, 2008 Winter Simulation Conference.

[2]  Xi Chen,et al.  The effects of common random numbers on stochastic kriging metamodels , 2012, TOMC.

[3]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[4]  R. Adler The Geometry of Random Fields , 2009 .

[5]  Victor Picheny,et al.  Adaptive Designs of Experiments for Accurate Approximation of a Target Region , 2010 .

[6]  S. Fraser,et al.  Modeling a hox gene network in silico using a stochastic simulation algorithm. , 2002, Developmental biology.

[7]  H. Kitano,et al.  Software for systems biology: from tools to integrated platforms , 2011, Nature Reviews Genetics.

[8]  Russell C. H. Cheng,et al.  Calculation of confidence intervals for simulation output , 2004, TOMC.

[9]  Hassan S. Bakouch,et al.  Elements of Distribution Theory , 2007 .

[10]  J. R. Wieland,et al.  Queueing-network stability: simulation-based checking , 2003, Proceedings of the 2003 Winter Simulation Conference, 2003..

[11]  Honggang Wang,et al.  Optimal Well Placement Under Uncertainty Using A Retrospective Optimization Framework , 2012, ANSS 2011.

[12]  Barry L. Nelson,et al.  A quicker assessment of input uncertainty , 2013, 2013 Winter Simulations Conference (WSC).

[13]  M. Farooq,et al.  Note on the generation of random points uniformly distributed in hyper-ellipsoids , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[14]  Szu Hui Ng,et al.  Joint criterion for factor identification and parameter estimation , 2002, Proceedings of the Winter Simulation Conference.

[15]  R. Cheng,et al.  Sensitivity of computer simulation experiments to errors in input data , 1997 .

[16]  Wei Xie,et al.  Quantifying Input Uncertainty via Simulation Confidence Intervals , 2014, INFORMS J. Comput..

[17]  M. Chavance [Jackknife and bootstrap]. , 1992, Revue d'epidemiologie et de sante publique.

[18]  Wei Xie,et al.  The influence of correlation functions on stochastic kriging metamodels , 2010, Proceedings of the 2010 Winter Simulation Conference.

[19]  James R. Wilson,et al.  Accounting for parameter uncertainty in simulation input modeling , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[20]  John W. Fowler,et al.  Grand Challenges in Modeling and Simulation of Complex Manufacturing Systems , 2004, Simul..

[21]  Jerome Sacks,et al.  Choosing the Sample Size of a Computer Experiment: A Practical Guide , 2009, Technometrics.

[22]  Russell R. Barton A MORE COMPLETE CHARACTERIZATION OF UNCERTAINTY : CAN IT BE DONE ? , 2007 .

[23]  Szu Hui Ng,et al.  Reducing parameter uncertainty for stochastic systems , 2006, TOMC.

[24]  Mrinal K. Sen,et al.  On optimization algorithms for the reservoir oil well placement problem , 2006 .

[25]  J. Norris Appendix: probability and measure , 1997 .

[26]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[27]  Lee W. Schruben,et al.  Resampling methods for input modeling , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[28]  Faker Zouaoui,et al.  Accounting for input-model and input-parameter uncertainties in simulation , 2004 .

[29]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[30]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[31]  Stephen E. Chick,et al.  Input Distribution Selection for Simulation Experiments: Accounting for Input Uncertainty , 2001, Oper. Res..

[32]  Jack P. C. Kleijnen,et al.  The correct Kriging variance estimated by bootstrapping , 2006, J. Oper. Res. Soc..