Spectral simulations of oscillatory convection at low Prandtl number

SUMMARY Pseudospectral methods are used for the computation of the time-dependent convective flows which arise in shallow cavities filled with low-Prandtl-number liquids when submitted to a horizontal temperature gradient. In similar situations several former numerical results have been shown to disagree about the determination of the threshold of oscillations and about the subsequent supercritical regimes. Two different tau-Chebyshev methods based on the vorticity-streamfunction formulation and using multistep time schemes are considered. Their results are discussed to assess the validity of the solutions. The physical problems concern rectangular cavities which involve either a rigid or a stress-free top wall and either conducting or insulating horizontal walls. Aside from the prediction of the onset of oscillations, which is discussed in the various situations with respect to the results of linear and non-linear analyses and to other computational results, the present study exhibits some bifurcation sequences and a hysteresis cycle at moderate Grashof numbers which are associated to the occurrence of multiple solutions.

[1]  S. Ostrach,et al.  Convective effects in crystals grown from melt , 1981 .

[2]  Vladimir Igorevich Arnolʹd,et al.  Chapitres supplémentaires de la théorie deséquations différentielles ordinaires , 1980 .

[3]  K. Stephanoff,et al.  Shear‐layer‐driven transition in a rectangular cavity , 1987 .

[4]  U. Ehrenstein Méthodes spectrales de résolution des équations de Stokes et de Navier-Stokes : application à des écoulements de convection double diffusive , 1986 .

[5]  Simon Ostrach NATURAL CONVECTION HEAT TRANSFER IN CAVITIES AND CELLS , 1982 .

[6]  Marcel Crochet,et al.  Numerical simulation of the horizontal Bridgman growth. Part I: Two-dimensional flow , 1987 .

[7]  R. Peyret,et al.  A Chebyshev collocation method for the Navier–Stokes equations with application to double‐diffusive convection , 1989 .

[8]  K. H. Winters Oscillatory convection in liquid metals in a horizontal temperature gradient , 1988 .

[9]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[10]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[11]  Robert A. Brown,et al.  Petrov‐Galerkin methods for natural convection in directional solidification of binary alloys , 1987 .

[12]  B. Roux,et al.  Ecoulements induits par la force gravifique dans une cavité cylindrique en rotation , 1987 .

[13]  Marcel Crochet,et al.  Numerical simulation of the horizontal Bridgman growth. Part II: Three‐dimensional flow , 1987 .

[14]  Spectral Method for Two-Dimensional Time-Dependent Pr→0 Convection , 1990 .

[15]  R. Peyret,et al.  Spectral Calculations of Convection in Low-Pr Fluids , 1990 .

[16]  A. Hindmarsh LSODE and LSODI, two new initial value ordinary differential equation solvers , 1980, SGNM.

[17]  R. M. Clever,et al.  Transition to time-dependent convection , 1974, Journal of Fluid Mechanics.

[18]  D. T. J. Hurle,et al.  Convective temperature oscillations in molten gallium , 1974, Journal of Fluid Mechanics.

[19]  H. B. Hadid,et al.  Onset of Oscillatory Convection in Horizontal Layers of Low-Prandtl-Number Melts , 1988 .

[20]  L. Petzold Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations , 1983 .

[21]  J. Comera,et al.  Influence of various hydrodynamic regimes in a melt on a solidification interface , 1987 .

[22]  A. Davey,et al.  On the removal of the singularities from the Riccati method , 1979 .

[23]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[24]  J. Patterson On the Existence of an Oscillatory Approach to Steady Natural Convection in Cavities , 1984 .

[25]  F. Busse The oscillatory instability of convection rolls in a low Prandtl number fluid , 1972, Journal of Fluid Mechanics.

[26]  W. E. Langlois Buoyancy-Driven Flows in Crystal-Growth Melts , 1985 .

[27]  T. Taylor,et al.  Computational methods for fluid flow , 1982 .

[28]  A. Hindmarsh,et al.  Stiff ode slovers: a review of current and coming attractions , 1987 .

[29]  A. E. Gill A theory of thermal oscillations in liquid metals , 1974, Journal of Fluid Mechanics.

[30]  G. Lauriat,et al.  A new formulation of the SADI method for the prediction of natural convection flows in cavities , 1985 .

[31]  John E. Hart,et al.  A note on the stability of low-Prandtl-number Hadley circulations , 1983, Journal of Fluid Mechanics.

[32]  F. Busse,et al.  Low-Prandtl-number convection in a layer heated from below , 1981, Journal of Fluid Mechanics.

[33]  S. Ostrach Convection phenomena at reduced gravity of importance for materials processing , 1976 .

[34]  Hisham M. Ettouney,et al.  Finite-element methods for steady solidification problems , 1983 .

[35]  Graham de Vahl Davis,et al.  FINITE DIFFERENCE METHODS FOR NATURAL AND MIXED CONVECTION IN ENCLOSURES , 1986 .

[36]  J. E. Hart,et al.  Stability of Thin Non-Rotating Hadley Circulations , 1972 .

[37]  Dale B. Haidvogel,et al.  The Accurate Solution of Poisson's Equation by Expansion in Chebyshev Polynomials , 1979 .

[38]  P. Gresho,et al.  Application of a modified finite element method to the time-dependent thermal convection of a liquid metal , 1983 .

[39]  C. Temperton Fast Mixed-Radix Real Fourier Transforms , 1983 .