Major rearrangements in the 70S ribosomal 3D structure caused by a conformational switch in 16S ribosomal RNA

Dynamic changes in secondary structure of the 16S rRNA during the decoding of mRNA are visualized by three‐dimensional cryo‐electron microscopy of the 70S ribosome. Thermodynamically unstable base pairing of the 912–910 (CUC) nucleotides of the 16S RNA with two adjacent complementary regions at nucleotides 885–887 (GGG) and 888–890 (GAG) was stabilized in either of the two states by point mutations at positions 912 (C912G) and 885 (G885U). A wave of rearrangements can be traced arising from the switch in the three base pairs and involving functionally important regions in both subunits of the ribosome. This significantly affects the topography of the A‐site tRNA‐binding region on the 30S subunit and thereby explains changes in tRNA affinity for the ribosome and fidelity of decoding mRNA.

[1]  Roger A. Garrett,et al.  The Ribosome, Structure, Function, Antibiotics, and Cellular Interactions , 2000 .

[2]  V. Ramakrishnan,et al.  Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution , 1999, Nature.

[3]  Poul Nissen,et al.  Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit , 1999, Nature.

[4]  Joachim Frank,et al.  EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome , 1999, Nature Structural Biology.

[5]  T. Pape,et al.  Induced fit in initial selection and proofreading of aminoacyl‐tRNA on the ribosome , 1999, The EMBO journal.

[6]  J. Frank,et al.  Effect of Buffer Conditions on the Position of tRNA on the 70 S Ribosome As Visualized by Cryoelectron Microscopy* , 1999, The Journal of Biological Chemistry.

[7]  P. Farabaugh,et al.  How translational accuracy influences reading frame maintenance , 1999, The EMBO journal.

[8]  J Frank,et al.  Structure and structural variations of the Escherichia coli 30 S ribosomal subunit as revealed by three-dimensional cryo-electron microscopy. , 1999, Journal of molecular biology.

[9]  C. Squires,et al.  An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Raymond F. Gesteland,et al.  Intricacies of ribosomal frameshifting , 1999, Nature Structural Biology.

[11]  S C Harvey,et al.  Three-dimensional placement of the conserved 530 loop of 16 S rRNA and of its neighboring components in the 30 S subunit. , 1999, Journal of molecular biology.

[12]  H. Noller,et al.  Site-directed hydroxyl radical probing of 30S ribosomal subunits by using Fe(II) tethered to an interruption in the 16S rRNA chain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  C. Merryman,et al.  Nucleotides in 23S rRNA protected by the association of 30S and 50S ribosomal subunits. , 1999, Journal of molecular biology.

[14]  T. Pape,et al.  Complete kinetic mechanism of elongation factor Tu‐dependent binding of aminoacyl‐tRNA to the A site of the E.coli ribosome , 1998, The EMBO journal.

[15]  E Westhof,et al.  The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. , 1998, RNA.

[16]  J Frank,et al.  Escherichia coli 70 S ribosome at 15 A resolution by cryo-electron microscopy: localization of fMet-tRNAfMet and fitting of L1 protein. , 1998, Journal of molecular biology.

[17]  Joachim Frank,et al.  A 9 Å Resolution X-Ray Crystallographic Map of the Large Ribosomal Subunit , 1998, Cell.

[18]  J Frank,et al.  Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. Firpo,et al.  The importance of base pairing in the penultimate stem of Escherichia coli 16S rRNA for ribosomal subunit association. , 1998, Nucleic acids research.

[20]  Harry F Noller,et al.  Molecular Movement inside the Translational Engine , 1998, Cell.

[21]  M. Zuker,et al.  Structural plasticity in RNA and its role in the regulation of protein translation in coliphage Q beta. , 1998, Journal of molecular biology.

[22]  R. Brimacombe,et al.  Visualization of elongation factor Tu on the Escherichia coli ribosome , 1997, Nature.

[23]  R. Zimmerman,et al.  Photoaffinity labeling of 30S-subunit proteins S7 and S11 by 4-thiouridine-substituted tRNA(Phe) situated at the P site of Escherichia coli ribosomes. , 1997, RNA.

[24]  A E Dahlberg,et al.  A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. , 1997, Science.

[25]  R. Brimacombe,et al.  A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. I. Fitting the RNA to a 3D electron microscopic map at 20 A. , 1997, Journal of molecular biology.

[26]  R. Brimacombe,et al.  A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. II. The RNA-protein interaction data. , 1997, Journal of molecular biology.

[27]  M van Heel,et al.  A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. III. The topography of the functional centre. , 1997, Journal of molecular biology.

[28]  R. Brimacombe,et al.  The path of mRNA through the bacterial ribosome: a site-directed crosslinking study using new photoreactive derivatives of guanosine and uridine. , 1997, RNA.

[29]  R. Brimacombe,et al.  Arrangement of tRNAs in Pre- and Posttranslocational Ribosomes Revealed by Electron Cryomicroscopy , 1997, Cell.

[30]  J Frank,et al.  Three-dimensional reconstruction of the Escherichia coli 30 S ribosomal subunit in ice. , 1996, Journal of molecular biology.

[31]  R. Agrawal,et al.  Sites of Ribosomal RNAs Involved in the Subunit Association of Tight and Loose Couple Ribosomes* , 1996, The Journal of Biological Chemistry.

[32]  J. Frank,et al.  Direct Visualization of A-, P-, and E-Site Transfer RNAs in the Escherichia coli Ribosome , 1996, Science.

[33]  J Frank,et al.  Estimation of variance distribution in three-dimensional reconstruction. I. Theory. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  R. Gutell,et al.  Genetic and comparative analyses reveal an alternative secondary structure in the region of nt 912 of Escherichia coli 16S rRNA. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Y. Chernoff,et al.  The accuracy center of a eukaryotic ribosome. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[36]  M. Ehrenberg,et al.  tRNA-ribosome interactions. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[37]  J. Frank,et al.  A model of the translational apparatus based on a three-dimensional reconstruction of the Escherichia coli ribosome. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[38]  J. Frank,et al.  A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome , 1995, Nature.

[39]  W. Tapprich,et al.  Pseudoknot in the central domain of small subunit ribosomal RNA is essential for translation. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Brimacombe,et al.  Contacts between 16S ribosomal RNA and mRNA, within the spacer region separating the AUG initiator codon and the Shine-Dalgarno sequence; a site-directed cross-linking study. , 1994, Nucleic acids research.

[41]  M. Laughrea Structural dynamics of translating ribosomes: 16S ribosomai RNA bases that may move twice during translocation , 1994, Molecular microbiology.

[42]  R. Gutell,et al.  Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. , 1994, Microbiological reviews.

[43]  H. A. Boer,et al.  Formation of the central pseudoknot in 16S rRNA is essential for initiation of translation. , 1993, The EMBO journal.

[44]  R. Brimacombe,et al.  Site-directed cross-linking of mRNA analogues to 16S ribosomal RNA; a complete scan of cross-links from all positions between '+1' and '+16' on the mRNA, downstream from the decoding site. , 1993, Nucleic acids research.

[45]  R. Brimacombe,et al.  Three widely separated positions in the 16S RNA lie in or close to the ribosomal decoding region; a site‐directed cross‐linking study with mRNA analogues. , 1992, The EMBO journal.

[46]  P. Mitchell,et al.  Identification of intermolecular RNA cross-links at the subunit interface of the Escherichia coli ribosome. , 1992, Biochemistry.

[47]  W. Hill,et al.  Probing dynamic changes in rRNA conformation in the 30S subunit of the Escherichia coli ribosome. , 1992, Biochemistry.

[48]  H. Noller,et al.  A functional pseudoknot in 16S ribosomal RNA. , 1991, The EMBO journal.

[49]  A. Frattali,et al.  Effects of mutagenesis of C912 in the streptomycin binding region of Escherichia coli 16S ribosomal RNA. , 1990, Biochimica et biophysica acta.

[50]  H. Noller,et al.  Isolation of temperature-sensitive mutants of 16 S rRNA in Escherichia coli. , 1989, Journal of molecular biology.

[51]  D. Moras,et al.  Crystallization and preliminary X-ray data of a phleomycin-binding protein from Streptoalloteichus hindustanus. , 1989, Journal of molecular biology.

[52]  A. E. Dahlberg The functional role of ribosomal RNA in protein synthesis , 1989, Cell.

[53]  J Frank,et al.  Electron microscopy and computer image averaging of ice-embedded large ribosomal subunits from Escherichia coli. , 1988, Journal of molecular biology.

[54]  J Frank,et al.  Three-dimensional reconstruction of the 30 S ribosomal subunit from randomly oriented particles. , 1984, Journal of molecular biology.

[55]  J. Frank,et al.  Cryo-Electron Microscopy of the Translational Apparatus: Experimental Evidence for the Paths of mRNA, tRNA, and the Polypeptide Chain , 2000 .

[56]  J. Frank,et al.  Conformational variability in Escherichia coli 70S ribosome as revealed by 3D cryo-electron microscopy. , 1999, The international journal of biochemistry & cell biology.

[57]  R. SamahaR,et al.  16S rRNA鎖内の切断部位に結合したFe(II)を用いた30Sリボソームサブユニットの部位特異ヒドロキシルラジカルプロービング , 1999 .

[58]  C. Merryman,et al.  Nucleotides in 16S rRNA protected by the association of 30S and 50S ribosomal subunits. , 1999, Journal of molecular biology.

[59]  H. Noller,et al.  Ribosomes and translation. , 1997, Annual review of biochemistry.

[60]  L. Gorini Streptomycin and Misreading of the Genetic Code , 1974 .

[61]  A. Wahba,et al.  [63] Chromatographic purification of ribosomes , 1967 .