The use of microsatellites for genetic analysis of natural populations.

Microsatellites, tandemly repeated units of 2 to 5 bp are distributed throughout eukaryotic genomes. Length variation within microsatellites, caused by DNA slippage, can be amplified by PCR and used for DNA profiling. In this paper potential applications and limitations of this technique are discussed. Two case studies for pilot whales (Globicephala melas) and sheep (Ovis aries) exemplify the suitability of microsatellites for analyzing natural populations. Other currently available profiling techniques are compared to microsatellite analysis.

[1]  D. L. Browne,et al.  Characterization of (CA)n microsatellites with degenerate sequencing primers , 1992, Nucleic Acids Res..

[2]  J. Mattick,et al.  The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. , 1991, Genomics.

[3]  D. Tautz,et al.  Isolation of simple‐sequence loci for use in polymerase chain reaction‐based DNA fingerprinting , 1991, Electrophoresis.

[4]  D. Tautz Hypervariability of simple sequences as a general source for polymorphic DNA markers. , 1989, Nucleic acids research.

[5]  K. Livak,et al.  DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. , 1990, Nucleic acids research.

[6]  G. Gutman,et al.  Slipped-strand mispairing: a major mechanism for DNA sequence evolution. , 1987, Molecular biology and evolution.

[7]  T. Petes,et al.  Instability of simple sequence DNA in Saccharomyces cerevisiae , 1992, Molecular and cellular biology.

[8]  Swee Lay Thein,et al.  Hypervariable ‘minisatellite’ regions in human DNA , 1985, Nature.

[9]  Paolo Romano,et al.  Molecular Probe Data Base: a database on synthetic oligonucleotides , 1993, Nucleic Acids Res..

[10]  D. Tautz,et al.  Conservation of polymorphic simple sequence loci in cetacean species , 1991, Nature.

[11]  B. Schierwater,et al.  Applications of random amplified polymorphic DNA (RAPD) in molecular ecology , 1992, Molecular ecology.

[12]  J. Avise,et al.  Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. , 1992, Science.

[13]  H. Ellegren DNA typing of museum birds , 1991, Nature.

[14]  A. Jeffreys,et al.  Systematic cloning of human minisatellites from ordered array charomid libraries. , 1990, Genomics.

[15]  G. Brem,et al.  Direct cloning of sequence tagged microsatellite sites by DNA affinity chromatography. , 1991, Nucleic acids research.

[16]  D. Tautz,et al.  Social structure of pilot whales revealed by analytical DNA profiling. , 1993, Science.

[17]  A. Jeffreys,et al.  Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA , 1988, Nature.

[18]  D. Queller,et al.  Detection of highly polymorphic microsatellite loci in a species with little allozyme polymorphism , 1993, Molecular ecology.

[19]  Ian C. Gray,et al.  Identification of the skeletal remains of a murder victim by DNA analysis , 1991, Nature.

[20]  C R Cantor,et al.  Sequence-specific DNA purification by triplex affinity capture. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Weber Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. , 1990, Genomics.

[22]  W. Hamilton The genetical evolution of social behaviour. I. , 1964, Journal of theoretical biology.

[23]  J. Avise,et al.  PCR-based assays of mendelian polymorphisms from anonymous single-copy nuclear DNA: techniques and applications for population genetics. , 1993, Molecular biology and evolution.

[24]  H. Lisle Gibbs,et al.  Realized Reproductive Success of Polygynous Red-Winged Blackbirds Revealed by DNA Markers , 1990, Science.

[25]  M. Litt,et al.  A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. , 1989, American journal of human genetics.

[26]  J. Weber,et al.  A new source of polymorphic DNA markers for sperm typing: analysis of microsatellite repeats in single cells. , 1992, American journal of human genetics.

[27]  G. Gyapay,et al.  A second-generation linkage map of the human genome , 1992, Nature.

[28]  K. Haymes,et al.  Parentage analysis using RAPD PCR. , 1992, Nucleic acids research.

[29]  C. Schlötterer,et al.  Non-radioactive analysis of multiplexed microsatellite reactions using a direct blotting-sequencing apparatus. , 1993, Nucleic acids research.

[30]  J. Love,et al.  Towards construction of a high resolution map of the mouse genome using PCR-analysed microsatellites. , 1990, Nucleic acids research.

[31]  S. Weller,et al.  CRYPTIC SELF‐INCOMPATIBILITY IN AMSINCKIA GRANDIFLORA , 1977, Evolution; international journal of organic evolution.

[32]  J. Weber,et al.  Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. , 1989, American journal of human genetics.

[33]  K. Mullis,et al.  Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. , 1988, Science.

[34]  R. Hubert,et al.  Whole genome amplification from a single cell: implications for genetic analysis. , 1992, Proceedings of the National Academy of Sciences of the United States of America.