On the Complexity of the Block Low-Rank Multifrontal Factorization

Matrices coming from elliptic partial differential equations have been shown to have a low-rank property: well-defined off-diagonal blocks of their Schur complements can be approximated by low-rank products, and this property can be efficiently exploited in multifrontal solvers to provide a substantial reduction of their complexity. Among the possible low-rank formats, the block low-rank (BLR) format is easy to use in a general purpose multifrontal solver and has been shown to provide significant gains compared to full-rank on practical applications. However, unlike hierarchical formats, such as $\mathcal{H}$ and HSS, its theoretical complexity was unknown. In this paper, we extend the theoretical work done on hierarchical matrices in order to compute the theoretical complexity of the BLR multifrontal factorization. We then present several variants of the BLR multifrontal factorization, depending on the strategies used to perform the updates in the frontal matrices and on the constraints on how numerical ...

[1]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[2]  Robert Schreiber,et al.  A New Implementation of Sparse Gaussian Elimination , 1982, TOMS.

[3]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[4]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[5]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[6]  Joseph W. H. Liu The role of elimination trees in sparse factorization , 1990 .

[7]  Joseph W. H. Liu,et al.  The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..

[8]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[9]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[10]  D. Ruiz A Scaling Algorithm to Equilibrate Both Rows and Columns Norms in Matrices 1 , 2001 .

[11]  Mario Bebendorf,et al.  Mathematik in den Naturwissenschaften Leipzig Existence of H-Matrix Approximants to the Inverse FE-Matrix of Elliptic Operators with L ∞-Coefficients , 2003 .

[12]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[13]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .

[14]  Ronald Kriemann,et al.  Hierarchical Matrices Based on a Weak Admissibility Criterion , 2004, Computing.

[15]  Per-Gunnar Martinsson,et al.  On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..

[16]  S. Sherwin,et al.  Finite Difference, Finite Element and Finite Volume Methods for Partial Differential Equations , 2005 .

[17]  Mario Bebendorf,et al.  Efficient inversion of the Galerkin matrix of general second-order elliptic operators with nonsmooth coefficients , 2004, Math. Comput..

[18]  Shivkumar Chandrasekaran,et al.  A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..

[19]  Mario Bebendorf,et al.  Why Finite Element Discretizations Can Be Factored by Triangular Hierarchical Matrices , 2007, SIAM J. Numer. Anal..

[20]  IAIN S. DUFF,et al.  Towards Stable Mixed Pivoting Strategies for the Sequential and Parallel Solution of Sparse Symmetric Indefinite Systems , 2007, SIAM J. Matrix Anal. Appl..

[21]  Mario Bebendorf,et al.  Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems , 2008 .

[22]  Jianlin Xia,et al.  Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..

[23]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[24]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[25]  Bora Uçar,et al.  Multifrontal Method , 2011, Encyclopedia of Parallel Computing.

[26]  Per-Gunnar Martinsson,et al.  A direct solver with O(N) complexity for integral equations on one-dimensional domains , 2011, 1105.5372.

[27]  Adrianna Gillman,et al.  Fast Direct Solvers for Elliptic Partial Differential Equations , 2011 .

[28]  Jianlin Xia,et al.  Efficient Structured Multifrontal Factorization for General Large Sparse Matrices , 2013, SIAM J. Sci. Comput..

[29]  Eric Darve,et al.  A Fast and Memory Efficient Sparse Solver with Applications to Finite-Element Matrices , 2014 .

[30]  Bora Uçar,et al.  A Symmetry Preserving Algorithm for Matrix Scaling , 2014, SIAM J. Matrix Anal. Appl..

[31]  Eric Darve,et al.  Fast hierarchical solvers for sparse matrices using low-rank approximation , 2015 .

[32]  Jean-Yves L'Excellent,et al.  Improving Multifrontal Methods by Means of Block Low-Rank Representations , 2015, SIAM J. Sci. Comput..

[33]  Patrick R. Amestoy,et al.  3D frequency-domain seismic modeling with a Parallel BLR multifrontal direct solver , 2015 .

[34]  Pieter Ghysels,et al.  A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization , 2015, ACM Trans. Math. Softw..

[35]  Jianlin Xia,et al.  A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure , 2016, ACM Trans. Math. Softw..

[36]  Samuel Williams,et al.  An Efficient Multicore Implementation of a Novel HSS-Structured Multifrontal Solver Using Randomized Sampling , 2015, SIAM J. Sci. Comput..

[37]  Eric Darve,et al.  A fast block low-rank dense solver with applications to finite-element matrices , 2014, J. Comput. Phys..

[38]  Patrick R. Amestoy,et al.  Fast 3D frequency-domain full-waveform inversion with a parallel block low-rank multifrontal direct solver: Application to OBC data from the North Sea , 2016 .

[39]  Kenneth L. Ho,et al.  Hierarchical Interpolative Factorization for Elliptic Operators: Differential Equations , 2016 .

[40]  Ivan V. Oseledets,et al.  "Compress and eliminate" solver for symmetric positive definite sparse matrices , 2016, SIAM J. Sci. Comput..