Analytic value function for optimal regime-switching pairs trading rules

We introduce a regime-switching Ornstein–Uhlenbeck (O–U) model to address an optimal investment problem. Our study gives a closed-form expression for a regime-switching pairs trading value function consisting of probability and expectation of the double boundary stopping time of the Markov-modulated O–U process. We derive analytic solutions for the homogenous and non-homogenous ODE systems with initial value conditions for probability and expectation of the double boundary stopping time, and translate the solutions with boundary value conditions into solutions with initial value conditions. Based on the smoothness and continuity of the value function, we can obtain the optimum of the value function with thresholds and guarantee the existence of optimal thresholds in a finite closed interval. Our numerical analysis illustrates the rationality of theoretical model and the shape of transition probability and expected stopping time, as well as discusses sensitivity analysis in both one-state and two-state regime-switching models. We find that the optimal expected return per unit time in the two-state regime-switching model is higher than that of one-state regime-switching model. Likewise, the regime-switching model’s optimal thresholds are closer and more symmetric to the long-term mean.

[1]  A. Polyanin,et al.  Handbook of Exact Solutions for Ordinary Differential Equations , 1995 .

[2]  Robert J. Elliott,et al.  On risk minimizing portfolios under a Markovian regime-switching Black-Scholes economy , 2010, Ann. Oper. Res..

[3]  Xin Guo,et al.  Optimal selling rules in a regime switching model , 2005, IEEE Transactions on Automatic Control.

[4]  M. Avellaneda,et al.  Statistical arbitrage in the US equities market , 2010 .

[5]  R. H. Liu,et al.  Optimal Selling Rules in a Regime-Switching Exponential Gaussian Diffusion Model , 2008, SIAM J. Appl. Math..

[6]  Douglas S. Ehrman,et al.  The Handbook of Pairs Trading: Strategies Using Equities, Options, and Futures , 2006 .

[7]  G. Vidyamurthy Pairs Trading: Quantitative Methods and Analysis , 2004 .

[8]  Qing Zhang,et al.  Option pricing in a regime-switching model using the fast Fourier transform , 2006 .

[9]  Xin Li,et al.  Optimal Mean Reversion Trading with Transaction Costs and Stop-Loss Exit , 2014, 1411.5062.

[10]  Pedro P. Mota,et al.  On a continuous time stock price model with regime switching, delay, and threshold , 2014 .

[11]  Qing Zhang,et al.  An Optimal Trading Rule Under a Switchable Mean-Reversion Model , 2014, J. Optim. Theory Appl..

[12]  A. Ray,et al.  A new approach to the economic analysis of projects , 1979 .

[13]  Yaozhong Hu,et al.  Parameter estimation for Ornstein-Uhlenbeck processes driven by α-stable Lévy motions , 2007 .

[14]  Onésimo Hernández-Lerma,et al.  Controlled Markov Processes , 1965 .

[15]  Robert J. Elliott,et al.  Option pricing and Esscher transform under regime switching , 2005 .

[16]  Qing Zhang,et al.  Trading a mean-reverting asset: Buy low and sell high , 2008, Autom..

[17]  Yan-Xia Lin,et al.  Loss protection in pairs trading through minimum profit bounds: A cointegration approach , 2006, Adv. Decis. Sci..

[18]  T. Bogomolov Pairs Trading in the Land Down Under , 2010 .

[19]  H. M. Jansen,et al.  Markov-modulated Ornstein–Uhlenbeck processes , 2014, Advances in Applied Probability.

[20]  H. Puspaningrum,et al.  Finding the Optimal Pre-set Boundaries for Pairs Trading Strategy Based on Cointegration Technique , 2010 .

[21]  R. H. Liu,et al.  Recursive Algorithms for Stock Liquidation: A Stochastic Optimization Approach , 2002, SIAM J. Optim..

[22]  Martin Weber,et al.  On the Determinants of Pairs Trading Profitability , 2014 .

[23]  S. Goldfeld,et al.  A Markov model for switching regressions , 1973 .

[24]  R. Faff,et al.  Are Pairs Trading Profits Robust to Trading Costs , 2012 .

[25]  Alexander Galenko,et al.  Trading in the Presence of Cointegration , 2012 .

[26]  Xin Guo An explicit solution to an optimal stopping problem with regime switching , 2001, Journal of Applied Probability.

[27]  Victor Pérez-Abreu Ornstein–Uhlenbeck Processes , 2010 .

[28]  Shuanming Li,et al.  On the probability of ruin in a Markov-modulated risk model , 2005 .

[29]  Roland Mestel,et al.  A Regime-Switching Relative Value Arbitrage Rule , 2008 .

[30]  W. P. Malcolm,et al.  Pairs trading , 2005 .

[31]  Q. Zhang,et al.  Stock Trading: An Optimal Selling Rule , 2001, SIAM J. Control. Optim..

[32]  R. Faff,et al.  Does Simple Pairs Trading Still Work? , 2010 .

[33]  William N. Goetzmann,et al.  Pairs Trading: Performance of a Relative Value Arbitrage Rule , 1998 .

[34]  R. Quandt The Estimation of the Parameters of a Linear Regression System Obeying Two Separate Regimes , 1958 .

[35]  Chi-Guhn Lee,et al.  Pairs trading: optimal thresholds and profitability , 2014 .

[36]  Robert J. Elliott,et al.  Robust Optimal Portfolio Choice Under Markovian Regime-switching Model , 2009 .

[37]  Gang George Yin,et al.  Markowitz's Mean-Variance Portfolio Selection with Regime Switching: A Continuous-Time Model , 2003, SIAM J. Control. Optim..

[38]  John B. Moore,et al.  Hidden Markov Models: Estimation and Control , 1994 .

[39]  Vasant Naik,et al.  Option Valuation and Hedging Strategies with Jumps in the Volatility of Asset Returns , 1993 .

[40]  B. Sericola,et al.  A second-order Markov-modulated fluid queue with linear service rate , 2004, Journal of Applied Probability.

[41]  Robert J. Elliott,et al.  An interest rate model with a Markovian mean reverting level , 2002 .

[42]  Mark Whistler,et al.  Trading Pairs: Capturing Profits and Hedging Risk with Statistical Arbitrage Strategies , 2004 .

[43]  João Caldeira,et al.  Selection of a Portfolio of Pairs Based on Cointegration: A Statistical Arbitrage Strategy , 2013 .

[44]  Q. Zhang,et al.  Trend Following Trading under a Regime Switching Model , 2010, SIAM J. Financial Math..

[45]  Robert J. Elliott,et al.  American options with regime switching , 2002 .