Fabrication of Hollow Inorganic Microspheres by Chemically Induced Self‐Transformation

Two contrasting approaches, involving either polymer‐mediated or fluoride‐mediated self‐transformation of amorphous solid particles, are described as general routes to the fabrication of hollow inorganic microspheres. Firstly, calcium carbonate and strontium tungstate hollow microspheres are fabricated in high yield using sodium poly(4‐styrenesulfonate) as a stabilizing agent for the formation and subsequent transformation of amorphous primary particles. Transformation occurs with retention of the bulk morphology by localized Ostwald ripening, in which preferential dissolution of the particle interior is coupled to the deposition of a porous external shell of loosely packed nanocrystals. Secondly, the fabrication process is extended to relatively stable amorphous microspheres, such as TiO2 and SnO2, by increasing the surface reactivity of the solid precursor particles. For this, fluoride ions, in the form of NH4F and SnF2, are used to produce well‐defined hollow spheroids of nanocrystalline TiO2 and SnO2, respectively. Our results suggest that the chemical self‐transformation of precursor objects under morphologically invariant conditions could be of general applicability in the preparation of a wide range of nanoparticle‐based hollow architectures for technological and biomedical applications.

[1]  Jiaguo Yu,et al.  Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes , 2006 .

[2]  Shuhong Yu,et al.  Block-copolymer-controlled growth of CaCO3 microrings. , 2006, The journal of physical chemistry. B.

[3]  W. Tremel,et al.  Probing cooperative interactions of tailor-made nucleation surfaces and macromolecules: a bioinspired route to hollow micrometer-sized calcium carbonate particles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[4]  Shuncheng Lee,et al.  Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. , 2006, Chemical communications.

[5]  Yadong Li,et al.  Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. , 2006, Chemistry.

[6]  H. Zeng Synthetic architecture of interior space for inorganic nanostructures , 2006 .

[7]  A. Xu,et al.  The effect of polyacrylamide on the crystallization of calcium carbonate: Synthesis of aragonite single-crystal nanorods and hollow vatarite hexagons , 2006 .

[8]  P. Löbmann,et al.  Liquid-Phase Deposition of TiO2 on Polystyrene Latex Particles Functionalized by the Adsorption of Polyelectrolytes , 2005 .

[9]  Byung Chul Jang,et al.  Simple Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium‐Ion Battery Anodes , 2005 .

[10]  M. Antonietti,et al.  Stable Amorphous CaCO3 Microparticles with Hollow Spherical Superstructures Stabilized by Phytic Acid , 2005 .

[11]  Haoxiang Wei,et al.  Crystallization and aggregation behaviors of calcium carbonate in the presence of poly(vinylpyrrolidone) and sodium dodecyl sulfate. , 2005, The journal of physical chemistry. B.

[12]  M. Fuji,et al.  Synthesis of hollow calcium carbonate particles by the bubble templating method , 2005 .

[13]  M. Zheng,et al.  A bio-inspired approach to the synthesis of CaCO3 spherical assemblies in a soluble ternary-additive system. , 2005, The journal of physical chemistry. B.

[14]  M. Fuji,et al.  A Novel Approach to Synthesize Hollow Calcium Carbonate Particles , 2005 .

[15]  D. Bavykin,et al.  The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes , 2004 .

[16]  P. Löbmann,et al.  Porous TiO2 hollow spheres by liquid phase deposition on polystyrene latex-stabilised Pickering emulsions , 2004 .

[17]  Helmut Cölfen,et al.  Bio-inspired crystal morphogenesis by hydrophilic polymers , 2004 .

[18]  F. Caruso,et al.  Two-component, ultrathin microcapsules prepared by a core-mediated layer-by-layer approach , 2004 .

[19]  Jiaguo Yu,et al.  A simple and general method for the synthesis of multicomponent Na2V6O16.3H2O single-crystal nanobelts. , 2004, Journal of the American Chemical Society.

[20]  Hua Chun Zeng,et al.  Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening. , 2004, The journal of physical chemistry. B.

[21]  P. Löbmann,et al.  Assembly of hollow spheres by templated liquid phase deposition following the principles of biomineralisation , 2004 .

[22]  Stephen Mann,et al.  Synthesis of Aragonite Nanofilament Networks by Mesoscale Self‐Assembly and Transformation in Reverse Microemulsions , 2003 .

[23]  Q. Jia,et al.  Structural properties of SrWO4 films synthesized by pulsed-laser deposition , 2003 .

[24]  M. Antonietti,et al.  Polymer-Controlled Morphosynthesis and Mineralization of Metal Carbonate Superstructures (†). , 2003, The journal of physical chemistry. B.

[25]  Stephen Mann,et al.  Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. , 2003, Angewandte Chemie.

[26]  Younan Xia,et al.  Metal Nanostructures with Hollow Interiors , 2003 .

[27]  Stephen Mann,et al.  Emergent Nanostructures: Water‐Induced Mesoscale Transformation of Surfactant‐Stabilized Amorphous Calcium Carbonate Nanoparticles in Reverse Microemulsions , 2002 .

[28]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[29]  D. Kaplan,et al.  Selective in Vitro Effect of Peptides on Calcium Carbonate Crystallization , 2002 .

[30]  Jiaguo Yu,et al.  Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders , 2002 .

[31]  Z. Lou,et al.  Cathodoluminescence of CaWO4 and SrWO4 thin films prepared by spray pyrolysis , 2002 .

[32]  S. Mann,et al.  Morphosynthesis of Organoclay Microspheres with Sponge‐like or Hollow Interiors , 2002 .

[33]  S. Mann,et al.  Morphosynthesis of Octacalcium Phosphate Hollow Microspheres by Polyelectrolyte-Mediated Crystallization , 2002 .

[34]  S. Mann,et al.  Morphosynthesis of octacalcium phosphate hollow microspheres by polyelectrolyte-mediated crystallization. , 2002, Angewandte Chemie.

[35]  L. Qi,et al.  Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double‐Hydrophilic Block Copolymers , 2002 .

[36]  S. Mann,et al.  Interfacial synthesis of hollow microspheres of mesostructured silica. , 2001, Chemical communications.

[37]  H. Cölfen Double-hydrophilic block copolymers: synthesis and application as novel surfactants and crystal growth modifiers. , 2001 .

[38]  Frank Caruso,et al.  Nanoengineering of particle surfaces. , 2001 .

[39]  S. Mann,et al.  Emergence of Morphological Complexity in BaSO4 Fibers Synthesized in AOT Microemulsions , 2000 .

[40]  Caruso,et al.  Hollow capsule processing through colloidal templating and self-assembly , 2000, Chemistry.

[41]  Younan Xia,et al.  Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads , 2000 .

[42]  P. Koutsoukos,et al.  The Overgrowth of Calcium Carbonate on Poly(vinyl chloride-co-vinyl acetate-co-maleic acid) , 1999 .

[43]  K. Naka,et al.  The effect of an anionic starburst dendrimer on the crystallization of CaCO3 in aqueous solution , 1999 .

[44]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[45]  Helmuth Möhwald,et al.  Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. , 1998, Angewandte Chemie.

[46]  M. Antonietti,et al.  Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers , 1998 .

[47]  T. Hirai,et al.  Biomimetic Synthesis of Calcium Carbonate Particles in a Pseudovesicular Double Emulsion , 1997 .

[48]  Jun Liu,et al.  Mesoporous Silica Synthesized by Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres , 1997 .

[49]  L. Qi,et al.  Reverse Micelle Based Formation of BaCO3 Nanowires , 1997 .

[50]  Q. Huo,et al.  Oil-Water Interface Templating of Mesoporous Macroscale Structures , 1996, Science.

[51]  S. Weiner,et al.  Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules , 1996, Science.

[52]  S. Mann,et al.  Fabrication of hollow porous shells of calcium carbonate from self-organizing media , 1995, Nature.

[53]  J. G. Liu,et al.  Factors influencing the formation of hollow ceramic microspheres by water extraction of colloidal droplets , 1995 .

[54]  E. Matijević,et al.  Zirconium compounds as coatings on polystyrene latex and as hollow spheres , 1991 .

[55]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .