Alterations in cortical interneurons and cognitive function in schizophrenia

[1]  D. Jeste,et al.  Hippocampal pathologic findings in schizophrenia. A morphometric study. , 1989, Archives of general psychiatry.

[2]  J. Morrison,et al.  Ultrastructural analysis of somatostatin‐immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[3]  F. Benes,et al.  Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. , 1991, Archives of general psychiatry.

[4]  S. Heckers,et al.  Hippocampal neuron number in schizophrenia. A stereological study. , 1991, Archives of general psychiatry.

[5]  S. Daviss,et al.  Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons , 1995, Psychiatry Research.

[6]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[7]  E. G. Jones,et al.  Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. , 1995, Archives of general psychiatry.

[8]  Michael F. Green,et al.  What are the functional consequences of neurocognitive deficits in schizophrenia? , 1996, The American journal of psychiatry.

[9]  G. Buzsáki,et al.  Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. , 1996, The Journal of physiology.

[10]  R. Desimone,et al.  Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque , 1996, The Journal of Neuroscience.

[11]  C. Beasley,et al.  Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics , 1997, Schizophrenia Research.

[12]  P. Kalus,et al.  Altered distribution of parvalbumin-immunoreactive local circuit neurons in the anterior cingulate cortex of schizophrenic patients , 1997, Psychiatry Research: Neuroimaging.

[13]  T. Goldberg,et al.  Visuospatial working memory in patients with schizophrenia , 1997, Biological Psychiatry.

[14]  Yogesh K. Dwivedi,et al.  A decrease of reelin expression as a putative vulnerability factor in schizophrenia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[15]  F. Benes,et al.  A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives , 1998, Biological Psychiatry.

[16]  J. John Mann,et al.  In vivo neurochemistry of the brain in schizophrenia as revealed by magnetic resonance spectroscopy , 1998, Biological Psychiatry.

[17]  T. Woo,et al.  A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  A. Sampson,et al.  Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. , 2000, Archives of general psychiatry.

[19]  I. Módy,et al.  Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations , 2000, The European journal of neuroscience.

[20]  D. Lewis,et al.  Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. , 2000, Archives of general psychiatry.

[21]  David A Lewis,et al.  Catching Up on Schizophrenia Natural History and Neurobiology , 2000, Neuron.

[22]  Yogesh K. Dwivedi,et al.  Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. , 2000, Archives of general psychiatry.

[23]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[24]  B. Pakkenberg,et al.  No deficit in total number of neurons in the prefrontal cortex in schizophrenics. , 2001, Journal of psychiatric research.

[25]  C. Beasley,et al.  GABAergic neuronal subtypes in the human frontal cortex — development and deficits in schizophrenia , 2001, Journal of Chemical Neuroanatomy.

[26]  A. Sampson,et al.  Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. , 2002, Cerebral cortex.

[27]  Daniel R Weinberger,et al.  Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study , 2002, Schizophrenia Research.

[28]  F. Benes,et al.  Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. , 2002, Archives of general psychiatry.

[29]  C. Beasley,et al.  Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins , 2002, Biological Psychiatry.

[30]  Gavin P. Reynolds,et al.  A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia , 2002, Schizophrenia Research.

[31]  C. Beasley,et al.  The density and spatial distribution of gabaergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia , 2002, Biological Psychiatry.

[32]  R. Nicoll,et al.  Endocannabinoid Signaling in the Brain , 2002, Science.

[33]  A. Sampson,et al.  Gene Expression Deficits in a Subclass of GABA Neurons in the Prefrontal Cortex of Subjects with Schizophrenia , 2003, The Journal of Neuroscience.

[34]  David A Lewis,et al.  Pyramidal neuron local axon terminals in monkey prefrontal cortex: differential targeting of subclasses of GABA neurons. , 2003, Cerebral cortex.

[35]  Tamás F Freund,et al.  Interneuron Diversity series: Rhythm and mood in perisomatic inhibition , 2003, Trends in Neurosciences.

[36]  R. Gur,et al.  Working memory deficit as a core neuropsychological dysfunction in schizophrenia. , 2003, The American journal of psychiatry.

[37]  P. Somogyi,et al.  Large variability in synaptic n-methyl-d-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus , 2003, Neuroscience.

[38]  Marc W Howard,et al.  Gamma oscillations correlate with working memory load in humans. , 2003, Cerebral cortex.

[39]  T. Sawaguchi,et al.  Delayed response deficits produced by local injection of bicuculline into the dorsolateral prefrontal cortex in Japanese macaque monkeys , 2004, Experimental Brain Research.

[40]  B. Bogerts,et al.  Cell loss in the hippocampus of schizophrenics , 2004, European archives of psychiatry and neurological sciences.

[41]  I. Módy,et al.  Diversity of inhibitory neurotransmission through GABAA receptors , 2004, Trends in Neurosciences.

[42]  T. Woo,et al.  Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. , 2004, Archives of general psychiatry.

[43]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[44]  P. Goldman-Rakic,et al.  Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  H. Silver,et al.  Evidence for sustained attention and working memory in schizophrenia sharing a common mechanism. , 2005, The Journal of neuropsychiatry and clinical neurosciences.

[46]  T. Bártfai,et al.  A Specific Role for NR2A-Containing NMDA Receptors in the Maintenance of Parvalbumin and GAD67 Immunoreactivity in Cultured Interneurons , 2006, The Journal of Neuroscience.

[47]  C. Carter,et al.  Impairments in frontal cortical γ synchrony and cognitive control in schizophrenia , 2006, Proceedings of the National Academy of Sciences.

[48]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[49]  Pablo Fuentealba,et al.  Cell Type-Specific Tuning of Hippocampal Interneuron Firing during Gamma Oscillations In Vivo , 2007, The Journal of Neuroscience.

[50]  T. Freund,et al.  Perisomatic Inhibition , 2007, Neuron.

[51]  J. Kaiser,et al.  Human gamma-frequency oscillations associated with attention and memory , 2007, Trends in Neurosciences.

[52]  B. Moghaddam,et al.  NMDA Receptor Hypofunction Produces Opposite Effects on Prefrontal Cortex Interneurons and Pyramidal Neurons , 2007, The Journal of Neuroscience.

[53]  Benjamin W. H. Lim,et al.  Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars , 2007, Proceedings of the National Academy of Sciences.

[54]  Fiona E. N. LeBeau,et al.  Recruitment of Parvalbumin-Positive Interneurons Determines Hippocampal Function and Associated Behavior , 2007, Neuron.

[55]  J. Lisman,et al.  Prolonged Exposure to Nmdar Antagonist Suppresses Inhibitory Synaptic Transmission in Prefrontal Cortex Animal Model and Brain Slices Preparation , 2022 .

[56]  H. M. Morris,et al.  Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia , 2008, Molecular Psychiatry.

[57]  Sarah E. Forster,et al.  Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. , 2008, The American journal of psychiatry.

[58]  T. Woo,et al.  Disease-specific alterations in glutamatergic neurotransmission on inhibitory interneurons in the prefrontal cortex in schizophrenia , 2008, Brain Research.

[59]  H. M. Morris,et al.  Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. , 2008, Cerebral cortex.

[60]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[61]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[62]  Michael F. Green,et al.  Identifying Cognitive Mechanisms Targeted for Treatment Development in Schizophrenia: An Overview of the First Meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia Initiative , 2008, Biological Psychiatry.

[63]  D. Lewis,et al.  GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. , 2008, Schizophrenia bulletin.

[64]  D. Melchitzky,et al.  Dendritic‐targeting GABA neurons in monkey prefrontal cortex: Comparison of somatostatin‐ and calretinin‐immunoreactive axon terminals , 2008, Synapse.

[65]  David A Lewis,et al.  Reduced cortical cannabinoid 1 receptor messenger RNA and protein expression in schizophrenia. , 2008, Archives of general psychiatry.

[66]  David A Lewis,et al.  Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. , 2008, The American journal of psychiatry.

[67]  D. Pinault,et al.  N-Methyl d-Aspartate Receptor Antagonists Ketamine and MK-801 Induce Wake-Related Aberrant γ Oscillations in the Rat Neocortex , 2008, Biological Psychiatry.

[68]  B. Alger,et al.  Synaptic Cross Talk between Perisomatic-Targeting Interneuron Classes Expressing Cholecystokinin and Parvalbumin in Hippocampus , 2009, The Journal of Neuroscience.

[69]  Gabor Szabo,et al.  Asynchronous Transmitter Release from Cholecystokinin-Containing Inhibitory Interneurons Is Widespread and Target-Cell Independent , 2009, The Journal of Neuroscience.

[70]  Krish D. Singh,et al.  Orientation Discrimination Performance Is Predicted by GABA Concentration and Gamma Oscillation Frequency in Human Primary Visual Cortex , 2009, The Journal of Neuroscience.

[71]  Derek K. Jones,et al.  Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans , 2009, Proceedings of the National Academy of Sciences.

[72]  R. Cho,et al.  Tiagabine Increases [11C]flumazenil Binding in Cortical Brain Regions in Healthy Control Subjects , 2009, Neuropsychopharmacology.

[73]  M. Webster,et al.  Decreased glutamic acid decarboxylase(67) mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders. , 2009, Journal of psychiatric research.

[74]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[75]  T. Kaneko,et al.  Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia , 2009, BMC psychiatry.

[76]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[77]  R. Yoshimura,et al.  Reduction of brain γ-aminobutyric acid (GABA) concentrations in early-stage schizophrenia patients: 3T Proton MRS study , 2009, Schizophrenia Research.

[78]  T. Ohmori,et al.  GABA concentration in schizophrenia patients and the effects of antipsychotic medication: A proton magnetic resonance spectroscopy study , 2010, Schizophrenia Research.

[79]  M. Webster,et al.  Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. , 2010, The American journal of psychiatry.

[80]  K. Nakazawa,et al.  Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes , 2010, Nature Neuroscience.

[81]  D. Linden,et al.  Narp regulates homeostatic scaling of excitatory synapses on Parvalbumin interneurons , 2010, Nature Neuroscience.

[82]  István Ulbert,et al.  Supplementary material to : Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus , 2010 .

[83]  Cameron S Carter,et al.  Gamma Oscillatory Power is Impaired During Cognitive Control Independent of Medication Status in First-Episode Schizophrenia , 2010, Neuropsychopharmacology.

[84]  W. Singer,et al.  Abnormal neural oscillations and synchrony in schizophrenia , 2010, Nature Reviews Neuroscience.

[85]  Dost Öngür,et al.  Elevated Gamma-Aminobutyric Acid Levels in Chronic Schizophrenia , 2010, Biological Psychiatry.

[86]  Jong H. Yoon,et al.  GABA Concentration Is Reduced in Visual Cortex in Schizophrenia and Correlates with Orientation-Specific Surround Suppression , 2010, The Journal of Neuroscience.

[87]  R. Straub,et al.  Expression of GABA Signaling Molecules KCC2, NKCC1, and GAD1 in Cortical Development and Schizophrenia , 2011, The Journal of Neuroscience.

[88]  J. Glausier,et al.  Selective Pyramidal Cell Reduction of GABAA Receptor α1 Subunit Messenger RNA Expression in Schizophrenia , 2011, Neuropsychopharmacology.

[89]  R. Sweet,et al.  Differential distribution of proteins regulating GABA synthesis and reuptake in axon boutons of subpopulations of cortical interneurons. , 2011, Cerebral cortex.

[90]  A. Sampson,et al.  Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. , 2011, The American journal of psychiatry.

[91]  Stephan Heckers,et al.  Hippocampal interneurons are abnormal in schizophrenia , 2011, Schizophrenia Research.

[92]  Daniel R. Weinberger,et al.  Genetic Association of ErbB4 and Human Cortical GABA Levels In Vivo , 2011, The Journal of Neuroscience.

[93]  T. Hashimoto,et al.  Lamina-specific alterations in cortical GABA(A) receptor subunit expression in schizophrenia. , 2011, Cerebral cortex.

[94]  D. Arion,et al.  Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia. , 2011, Archives of general psychiatry.

[95]  M. Webster,et al.  Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. , 2011, Journal of psychiatry & neuroscience : JPN.

[96]  Rafael Yuste,et al.  State-Dependent Function of Neocortical Chandelier Cells , 2011, The Journal of Neuroscience.

[97]  David A Lewis,et al.  Glutamate Receptor Subtypes Mediating Synaptic Activation of Prefrontal Cortex Neurons: Relevance for Schizophrenia , 2011, The Journal of Neuroscience.

[98]  H. M. Morris,et al.  Lamina- and cell-specific alterations in cortical somatostatin receptor 2 mRNA expression in schizophrenia , 2012, Neuropharmacology.

[99]  A. Stan,et al.  Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies. , 2012, Current pharmaceutical biotechnology.

[100]  Jochen F Staiger,et al.  Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex , 2012, Nature Neuroscience.

[101]  Allan R. Sampson,et al.  Reduced Glutamate Decarboxylase 65 Protein Within Primary Auditory Cortex Inhibitory Boutons in Schizophrenia , 2012, Biological Psychiatry.

[102]  M. Buonocore,et al.  MR spectroscopic studies of the brain in psychiatric disorders. , 2012, Current topics in behavioral neurosciences.

[103]  M. Bartos,et al.  Functional characteristics of parvalbumin‐ and cholecystokinin‐expressing basket cells , 2012, The Journal of physiology.

[104]  P. Somogyi,et al.  Temporal Dynamics of Parvalbumin-Expressing Axo-axonic and Basket Cells in the Rat Medial Prefrontal Cortex In Vivo , 2012, The Journal of Neuroscience.

[105]  Mark Slifstein,et al.  Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. , 2012, Archives of general psychiatry.

[106]  Daniel Brandeis,et al.  Frontal GABA Levels Change during Working Memory , 2012, PloS one.

[107]  W. Gordon Frankle,et al.  [11C]flumazenil Binding Is Increased in a Dose-Dependent Manner with Tiagabine-Induced Elevations in GABA Levels , 2012, PloS one.

[108]  D. Lewis,et al.  NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. , 2012, Schizophrenia bulletin.

[109]  Jessica A. Cardin,et al.  A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior , 2011, Molecular Psychiatry.

[110]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[111]  T. Woo,et al.  Developmental Pattern of Perineuronal Nets in the Human Prefrontal Cortex and Their Deficit in Schizophrenia , 2013, Biological Psychiatry.

[112]  J. Morrison,et al.  NMDA Receptors Subserve Persistent Neuronal Firing during Working Memory in Dorsolateral Prefrontal Cortex , 2013, Neuron.

[113]  Z. J. Huang,et al.  Role of glutamic acid decarboxylase 67 in regulating cortical parvalbumin and GABA membrane transporter 1 expression: Implications for schizophrenia , 2013, Neurobiology of Disease.

[114]  S. A. Wijtenburg,et al.  In vivo measurements of glutamate, GABA, and NAAG in schizophrenia. , 2013, Schizophrenia bulletin.

[115]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[116]  R. Kahn,et al.  Schizophrenia is a cognitive illness: time for a change in focus. , 2013, JAMA psychiatry.

[117]  D. Lewis,et al.  Dendritic spine pathology in schizophrenia , 2013, Neuroscience.

[118]  Pico Caroni,et al.  Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning , 2013, Nature.

[119]  R. Tremblay,et al.  Neocortical Somatostatin-Expressing GABAergic Interneurons Disinhibit the Thalamorecipient Layer 4 , 2013, Neuron.

[120]  J. Glausier,et al.  Altered parvalbumin basket cell inputs in the dorsolateral prefrontal cortex of schizophrenia subjects , 2014, Molecular Psychiatry.

[121]  Paul J. Harrison,et al.  Resting GABA and glutamate concentrations do not predict visual gamma frequency or amplitude , 2014, Proceedings of the National Academy of Sciences.

[122]  L. Mei,et al.  Neuregulin-ERBB Signaling in the Nervous System and Neuropsychiatric Diseases , 2014, Neuron.

[123]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[124]  Peyman Golshani,et al.  Functional fission of parvalbumin interneuron classes during fast network events , 2014, eLife.

[125]  H. Bazmi,et al.  Lower expression of glutamic acid decarboxylase 67 in the prefrontal cortex in schizophrenia: contribution of altered regulation by Zif268. , 2014, The American journal of psychiatry.

[126]  Sarah H. Lisanby,et al.  Neuroimage: Clinical Gaba Level, Gamma Oscillation, and Working Memory Performance in Schizophrenia , 2022 .

[127]  K. Phan,et al.  Abnormal GABAergic Function and Negative Affect in Schizophrenia , 2014, Neuropsychopharmacology.

[128]  E. Banks,et al.  De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.

[129]  René S. Kahn,et al.  GABA and glutamate in schizophrenia: A 7 T 1H-MRS study , 2014, NeuroImage: Clinical.

[130]  Martin J. Schmidt,et al.  Modulation of behavioral networks by selective interneuronal inactivation , 2014, Molecular Psychiatry.

[131]  M. MacDonald,et al.  The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies , 2015, Annals of the New York Academy of Sciences.

[132]  S. Berretta,et al.  Losing the sugar coating: Potential impact of perineuronal net abnormalities on interneurons in schizophrenia , 2015, Schizophrenia Research.

[133]  John H Krystal,et al.  Functional hierarchy underlies preferential connectivity disturbances in schizophrenia , 2015, Proceedings of the National Academy of Sciences.

[134]  S. Jinno,et al.  Perineuronal nets affect parvalbumin expression in GABAergic neurons of the mouse hippocampus , 2015, The European journal of neuroscience.

[135]  H. Bazmi,et al.  Altered Markers of Cortical γ-Aminobutyric Acid Neuronal Activity in Schizophrenia: Role of the NARP Gene. , 2015, JAMA psychiatry.

[136]  David A Lewis,et al.  In vivo measurement of GABA transmission in healthy subjects and schizophrenia patients. , 2015, The American journal of psychiatry.

[137]  Aiqing He,et al.  Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder , 2014, Molecular Psychiatry.

[138]  D. Lewis,et al.  Alterations in Cortical Network Oscillations and Parvalbumin Neurons in Schizophrenia , 2015, Biological Psychiatry.

[139]  J. Corradi,et al.  Altered Expression of CDC42 Signaling Pathway Components in Cortical Layer 3 Pyramidal Cells in Schizophrenia , 2015, Biological Psychiatry.

[140]  J. Glausier,et al.  Lower Glutamic Acid Decarboxylase 65-kDa Isoform Messenger RNA and Protein Levels in the Prefrontal Cortex in Schizoaffective Disorder but Not Schizophrenia , 2015, Biological Psychiatry.

[141]  S. Jinno,et al.  Subclass‐specific formation of perineuronal nets around parvalbumin‐expressing GABAergic neurons in Ammon's horn of the mouse hippocampus , 2015, The Journal of comparative neurology.

[142]  K. Fish,et al.  Reduced Labeling of Parvalbumin Neurons and Perineuronal Nets in the Dorsolateral Prefrontal Cortex of Subjects with Schizophrenia , 2016, Neuropsychopharmacology.

[143]  A. Sampson,et al.  Dysregulated ErbB4 Splicing in Schizophrenia: Selective Effects on Parvalbumin Expression. , 2015, The American journal of psychiatry.

[144]  S. A. Wijtenburg,et al.  Frontal Glutamate and γ-Aminobutyric Acid Levels and Their Associations With Mismatch Negativity and Digit Sequencing Task Performance in Schizophrenia. , 2016, JAMA psychiatry.

[145]  Danko D. Georgiev,et al.  Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons. , 2016, Schizophrenia bulletin.

[146]  K. Fish,et al.  Markedly Lower Glutamic Acid Decarboxylase 67 Protein Levels in a Subset of Boutons in Schizophrenia , 2016, Biological Psychiatry.

[147]  D. Weinberger,et al.  Prefrontal GABA Levels Measured With Magnetic Resonance Spectroscopy in Patients With Psychosis and Unaffected Siblings. , 2016, The American journal of psychiatry.

[148]  Dohoung Kim,et al.  Distinct Roles of Parvalbumin- and Somatostatin-Expressing Interneurons in Working Memory , 2016, Neuron.

[149]  Peter Kochunov,et al.  Medial Frontal GABA is Lower in Older Schizophrenia: A MEGA-PRESS with Macromolecule Suppression Study , 2015, Molecular Psychiatry.

[150]  K. Fish,et al.  Pathological Basis for Deficient Excitatory Drive to Cortical Parvalbumin Interneurons in Schizophrenia. , 2016, The American journal of psychiatry.

[151]  Jong H. Yoon,et al.  Dorsolateral Prefrontal Cortex GABA Concentration in Humans Predicts Working Memory Load Processing Capacity , 2016, The Journal of Neuroscience.

[152]  Alison L. Barth,et al.  Somatostatin-expressing neurons in cortical networks , 2016, Nature Reviews Neuroscience.

[153]  M. Rasch,et al.  Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band Oscillations , 2017, Neuron.

[154]  K. Fish,et al.  Developmental pruning of excitatory synaptic inputs to parvalbumin interneurons in monkey prefrontal cortex , 2017, Proceedings of the National Academy of Sciences.

[155]  A. Egerton,et al.  Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis , 2017, Translational psychiatry.

[156]  John P. Corradi,et al.  Transcriptome Alterations in Prefrontal Pyramidal Cells Distinguish Schizophrenia From Bipolar and Major Depressive Disorders , 2017, Biological Psychiatry.

[157]  René S. Kahn,et al.  7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings , 2017, Biological Psychiatry.

[158]  T. Sejnowski,et al.  Cortical gamma band synchronization through somatostatin interneurons , 2017, Nature Neuroscience.

[159]  D. Lewis,et al.  Distinct Physiological Maturation of Parvalbumin-Positive Neuron Subtypes in Mouse Prefrontal Cortex , 2017, The Journal of Neuroscience.

[160]  I. Agartz,et al.  CSF GABA is reduced in first-episode psychosis and associates to symptom severity , 2017, Molecular Psychiatry.

[161]  S. Dienel,et al.  Altered Gradients of Glutamate and Gamma-Aminobutyric Acid Transcripts in the Cortical Visuospatial Working Memory Network in Schizophrenia , 2017, Biological Psychiatry.

[162]  A. Graff-Guerrero,et al.  Prefrontal and Striatal Gamma-Aminobutyric Acid Levels and the Effect of Antipsychotic Treatment in First-Episode Psychosis Patients , 2017, Biological Psychiatry.