Optomechanics with one-dimensional gallium phosphide photonic crystal cavities

We present the first investigation of optomechanics in an integrated one-dimensional gallium phosphide (GaP) photonic crystal cavity. The devices are fabricated with a newly developed process flow for integration of GaP devices on silicon dioxide (SiO2) involving direct wafer bonding of an epitaxial GaP/AlxGa1-xP/GaP heterostructure onto an oxidized silicon wafer. Device designs are transferred into the top GaP layer by inductively-coupled-plasma reactive ion etching and made freestanding by removal of the underlying SiO2. Finite-element simulations of the photonic crystal cavities predict optical quality factors greater than 106 at a design wavelength of 1550 nm and optomechanical coupling rates as high as 900 kHz for the mechanical breathing mode localized in the center of the photonic crystal cavity. The first fabricated devices exhibit optical quality factors as high as 6.5 × 104, and the mechanical breathing mode is found to have a vacuum coupling rate of 200 kHz at a frequency of 2.59 GHz. These results, combined with low two-photon absorption at telecommunication wavelengths and piezoelectric behavior, make GaP a promising material for the development of future nanophotonic devices in which optical and mechanical modes as well as high-frequency electrical signals interact.

[1]  Georg Rossbach,et al.  High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate , 2012 .

[2]  Amit Vainsencher,et al.  Nanomechanical coupling between microwave and optical photons , 2013, Nature Physics.

[3]  Thomas Purdy,et al.  Bidirectional and efficient conversion between microwave and optical light , 2014 .

[4]  Kartik Srinivasan,et al.  Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits , 2015, Nature Photonics.

[5]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[6]  T. Kenny,et al.  What is the Young's Modulus of Silicon? , 2010, Journal of Microelectromechanical Systems.

[7]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[8]  S. Deleglise,et al.  Determination of the vacuum optomechanical coupling rate using frequency noise calibration. , 2010, Optics Express.

[9]  S. Schmid,et al.  Optical detection of radio waves through a nanomechanical transducer , 2013, Nature.

[10]  Yuncheng Song,et al.  Waveguide-integrated single-crystalline GaP resonators on diamond. , 2014, Optics express.

[11]  M. Lipson,et al.  Broadband mid-infrared frequency comb generation in a Si3N4 microresonator , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[12]  Y. Blanter,et al.  Self-sustained oscillations of a torsional SQUID resonator induced by Lorentz-force back-action , 2013, Nature Communications.

[13]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[14]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[15]  J. Vučković,et al.  Gallium phosphide photonic crystal nanocavities in the visible , 2008, LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[16]  Zheng Wang,et al.  Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces. , 2010, Optics express.

[17]  Jean Fompeyrine,et al.  Scalability of ultra-thin-body and BOX InGaAs MOSFETs on silicon , 2013, 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[18]  Christoph Pauly,et al.  One- and two-dimensional photonic crystal microcavities in single crystal diamond. , 2011, Nature nanotechnology.

[19]  Bit Optical Waves in Crystals Propagation and Control of Laser Radiation , 2022 .

[20]  O. Painter,et al.  Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap. , 2010, Optics express.

[21]  Andrew G. Glen,et al.  APPL , 2001 .

[22]  M. Lequime,et al.  Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. , 2012, Optics express.

[23]  W. Bond Measurement of the Refractive Indices of Several Crystals , 1965 .

[24]  Steven G. Johnson,et al.  Perturbation theory for Maxwell's equations with shifting material boundaries. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  K. Srinivasan,et al.  Si$_3$N$_4$ nanobeam optomechanical crystals , 2014 .

[26]  Tal Carmon,et al.  Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. , 2005, Physical review letters.

[27]  K. Srinivasan,et al.  Si3N4 optomechanical crystals in the resolved-sideband regime , 2013, 1311.6325.

[28]  E. Taft,et al.  Kramers-Kronig Analysis of Reflectance Data for Diamond , 1964 .

[29]  Raymond G. Beausoleil,et al.  Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond , 2009 .

[30]  L. Czornomaz,et al.  Highly selective dry etching of GaP in the presence of AlxGa1–xP with a SiCl4/SF6 plasma , 2018, 1801.06469.

[31]  R. Dixon Photoelastic Properties of Selected Materials and Their Relevance for Applications to Acoustic Light Modulators and Scanners , 1967 .

[32]  A. Louisa,et al.  コロイド混合体における有効力 空乏引力から集積斥力へ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2002 .

[33]  Patrick J. French,et al.  Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability , 2009 .

[34]  Edward H. Chen,et al.  One-dimensional photonic crystal cavities in single-crystal diamond , 2015 .

[35]  Patrik Rath,et al.  Diamond-integrated optomechanical circuits , 2013, Nature Communications.

[36]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005 .

[37]  K. Schneider,et al.  Strong optomechanical coupling in a slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio. , 2016, Optics express.

[38]  D Vij,et al.  Handbook of electroluminescent materials , 2004 .

[39]  Nicolas Grandjean,et al.  Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon , 2016 .

[40]  K. Vahala,et al.  Optomechanical crystals , 2009, Nature.

[41]  H. Rothuizen,et al.  Photonic crystal nanobeam cavities with an ultrahigh quality factor-to-modal volume ratio , 2013, 2013 IEEE Photonics Society Summer Topical Meeting Series.

[42]  Charles Santori,et al.  Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers. , 2009, Optics express.

[43]  B. Mytsyk,et al.  Elasto-optic effect anisotropy in gallium phosphide crystals. , 2015, Applied optics.

[44]  K. Lister,et al.  Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio. , 2013, Optics express.

[45]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[46]  S. Strigin,et al.  Parametric oscillatory instability in Fabry-Perot interferometer , 2001, gr-qc/0107079.

[47]  K. Vahala,et al.  Loss characterization in micro-cavities using the thermal bistability effect , 2004, Digest of the LEOS Summer Topical Meetings Biophotonics/Optical Interconnects and VLSI Photonics/WBM Microcavities, 2004..

[48]  Oskar Painter,et al.  Optimized optomechanical crystal cavity with acoustic radiation shield , 2012, 1206.2099.

[49]  Katharina Schneider,et al.  Gallium Phosphide-on-Silicon Dioxide Photonic Devices , 2018, Journal of Lightwave Technology.

[50]  M. Cardona,et al.  Piezobirefringence in GaP and InP , 1979 .

[51]  Vladimir S. Ilchenko,et al.  Quality-factor and nonlinear properties of optical Whispering-Gallery modes , 1989 .

[52]  Marc Ilegems,et al.  Infrared Lattice Vibrations and Free-Electron Dispersion in GaN , 1973 .