Network Coding Gaps for Completion Times of Multiple Unicasts

We study network coding gaps for the problem of makespan minimization of multiple unicasts. In this problem distinct packets at different nodes in a network need to be delivered to a destination specific to each packet, as fast as possible. The network coding gap specifies how much coding packets together in a network can help compared to the more natural approach of routing. While makespan minimization using routing has been intensely studied for the multiple unicasts problem, no bounds on network coding gaps for this problem are known. We develop new techniques which allow us to upper bound the network coding gap for the makespan of $k$ unicasts, proving this gap is at most polylogarithmic in $k$. Complementing this result, we show there exist instances of $k$ unicasts for which this coding gap is polylogarithmic in $k$. Our results also hold for average completion time, and more generally any $\ell_{p}$ norm of completion times.

[1]  P. Chou,et al.  Low complexity algebraic multicast network codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[2]  Philip N. Klein,et al.  Approximation Algorithms for Steiner and Directed Multicuts , 1997, J. Algorithms.

[3]  Chandra Chekuri,et al.  Flow-cut gaps for integer and fractional multiflows , 2010, SODA '10.

[4]  Bernhard Haeupler,et al.  Distributed Algorithms for Planar Networks II: Low-Congestion Shortcuts, MST, and Min-Cut , 2016, SODA.

[5]  Amit Agarwal,et al.  On the advantage of network coding for improving network throughput , 2004, ITW.

[6]  Joris van der Hoeven,et al.  Polynomial Multiplication over Finite Fields in Time \( O(n \log n \) , 2019, J. ACM.

[7]  Zongpeng Li,et al.  A Constant Bound on Throughput Improvement of Multicast Network Coding in Undirected Networks , 2009, IEEE Transactions on Information Theory.

[8]  Robert Krauthgamer,et al.  Flow-Cut Gaps and Face Covers in Planar Graphs , 2019, SODA.

[9]  Bernhard Haeupler,et al.  Low-Congestion shortcuts without embedding , 2016, Distributed Computing.

[10]  Martin Skutella,et al.  Packet Routing: Complexity and Algorithms , 2009, WAOA.

[11]  C. Fragouli,et al.  Efficient Broadcasting Using Network Coding , 2008, IEEE/ACM Transactions on Networking.

[12]  Ronald Koch,et al.  Real-Time Message Routing and Scheduling , 2009, APPROX-RANDOM.

[13]  Thomas Rothvoß A simpler proof for O(congestion + dilation) packet routing , 2012, ArXiv.

[14]  Bernhard Haeupler,et al.  Simple, Fast and Deterministic Gossip and Rumor Spreading , 2012, SODA.

[15]  Satish Rao,et al.  Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.

[16]  Anupam Gupta,et al.  Embedding k-outerplanar graphs into ℓ1 , 2003, SODA '03.

[17]  Sanjeev Khanna,et al.  Multicommodity flow, well-linked terminals, and routing problems , 2005, STOC '05.

[18]  David Peleg,et al.  A Near-Tight Lower Bound on the Time Complexity of Distributed Minimum-Weight Spanning Tree Construction , 2000, SIAM J. Comput..

[19]  Philip N. Klein,et al.  Excluded minors, network decomposition, and multicommodity flow , 1993, STOC.

[20]  Yunnan Wu,et al.  Minimum-energy multicast in mobile ad hoc networks using network coding , 2004, Information Theory Workshop.

[21]  Mark Braverman,et al.  Network coding in undirected graphs is either very helpful or not helpful at all , 2017, ITCS.

[22]  Elaine Shi,et al.  Lower bounds for external memory integer sorting via network coding , 2019, STOC.

[23]  Friedhelm Meyer auf der Heide,et al.  Shortest-Path Routing in Arbitrary Networks , 1999, J. Algorithms.

[24]  James R. Lee,et al.  Genus and the geometry of the cut graph , 2010, SODA '10.

[25]  Bruce M. Maggs,et al.  Fast Algorithms for Finding O(Congestion + Dilation) Packet Routing Schedules , 1999, Comb..

[26]  Abbas Yongaçoglu,et al.  On the k-pairs problem , 2008, 2008 IEEE International Symposium on Information Theory.

[27]  Yuval Rabani,et al.  An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..

[28]  David Gamarnik,et al.  Asymptotically Optimal Algorithms for Job Shop Scheduling and Packet Routing , 1999, J. Algorithms.

[29]  Kasper Green Larsen,et al.  Lower Bounds for Multiplication via Network Coding , 2019, ICALP.

[30]  Shachar Lovett Linear codes cannot approximate the network capacity within any constant factor , 2014, Electron. Colloquium Comput. Complex..

[31]  Zongpeng Li,et al.  Network Coding in Undirected Networks , 2004 .

[32]  Zongpeng Li,et al.  A Geometric Perspective to Multiple-Unicast Network Coding , 2014, IEEE Transactions on Information Theory.

[33]  Sreeram Kannan,et al.  Delay-constrained unicast and the triangle-cast problem , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[34]  M. Medard,et al.  On the multiple unicast network coding, conjecture , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[35]  Bruce M. Maggs,et al.  Packet routing and job-shop scheduling inO(congestion+dilation) steps , 1994, Comb..

[36]  Xu Du,et al.  On Space Information Flow: Single multicast , 2013, 2013 International Symposium on Network Coding (NetCod).

[37]  Vijay V. Vazirani,et al.  On the capacity of multiple unicast sessions in undirected graphs , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[38]  Aravind Srinivasan,et al.  Integrality ratio for group Steiner trees and directed steiner trees , 2003, SODA '03.

[39]  T. C. Hu Multi-Commodity Network Flows , 1963 .

[40]  Robert D. Kleinberg,et al.  Comparing Network Coding with Multicommodity Flow for the k-pairs Communication Problem , 2004 .

[41]  Éva Tardos,et al.  Improved bounds on the max-flow min-cut ratio for multicommodity flows , 1993, Comb..

[42]  Robert D. Kleinberg,et al.  Lexicographic Products and the Power of Non-linear Network Coding , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[43]  Samir Khuller,et al.  On directed Steiner trees , 2002, SODA '02.

[44]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[45]  Mihalis Yannakakis,et al.  Approximate Max-Flow Min-(Multi)Cut Theorems and Their Applications , 1996, SIAM J. Comput..

[46]  Bernhard Haeupler,et al.  Analyzing Network Coding (Gossip) Made Easy , 2010, J. ACM.

[47]  Muriel Médard,et al.  Algebraic gossip: a network coding approach to optimal multiple rumor mongering , 2006, IEEE Transactions on Information Theory.

[48]  Michael Elkin An Unconditional Lower Bound on the Time-Approximation Trade-off for the Distributed Minimum Spanning Tree Problem , 2006, SIAM J. Comput..

[49]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[50]  Minghua Chen,et al.  Sending Perishable Information: Coding Improves Delay-Constrained Throughput Even for Single Unicast , 2014, IEEE Transactions on Information Theory.

[51]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[52]  Ashish Goel,et al.  On the Network Coding Advantage for Wireless Multicast in Euclidean Space , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[53]  Bernhard Haeupler,et al.  Near-Optimal Low-Congestion Shortcuts on Bounded Parameter Graphs , 2016, DISC.

[54]  Christian Scheideler,et al.  Universal Routing Strategies for Interconnection Networks , 1998, Lecture Notes in Computer Science.

[55]  Serap A. Savari,et al.  Edge-Cut Bounds on Network Coding Rates , 2006, Journal of Network and Systems Management.

[56]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[57]  Shyamkishor Kumar NETWORK CODING THE CASE OF MULTIPLE UNICAST SESSIONS , 2015 .

[58]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[59]  Baochun Li,et al.  Network Coding : The Case of Multiple Unicast Sessions , 2004 .

[60]  Satish Rao,et al.  An approximate max-flow min-cut relation for undirected multicommodity flow, with applications , 1995, Comb..

[61]  Rafail Ostrovsky,et al.  Universal O(congestion + dilation + log1+εN) local control packet switching algorithms , 1997, STOC '97.

[62]  Yuval Rabani,et al.  Distributed packet switching in arbitrary networks , 1996, STOC '96.

[63]  Michael Elkin,et al.  A faster distributed protocol for constructing a minimum spanning tree , 2004, SODA '04.

[64]  Haruko Okamura,et al.  Multicommodity flows in planar graphs , 1981, J. Comb. Theory, Ser. B.

[65]  Ittai Abraham,et al.  Cops, robbers, and threatening skeletons: padded decomposition for minor-free graphs , 2013, STOC.

[66]  Aravind Srinivasan,et al.  A constant-factor approximation algorithm for packet routing, and balancing local vs. global criteria , 1997, STOC '97.

[67]  Paul G. Spirakis,et al.  Direct routing: Algorithms and complexity , 2004, Algorithmica.

[68]  Muriel Medard,et al.  XORs in the air: practical wireless network coding , 2006, SIGCOMM 2006.

[69]  Kunal Talwar,et al.  An Improved Decomposition Theorem for Graphs Excluding a Fixed Minor , 2003, RANDOM-APPROX.

[70]  Andreas Wiese,et al.  Universal Packet Routing with Arbitrary Bandwidths and Transit Times , 2011, IPCO.

[71]  Mohsen Ghaffari,et al.  New Distributed Algorithms in Almost Mixing Time via Transformations from Parallel Algorithms , 2018, DISC.

[72]  Goran Zuzic,et al.  Proposal : Distributed Optimization Beyond Worst-Case Topologies , 2019 .

[73]  Thomas Rothvoß A Simpler Proof for $O(\textrm{Congestion} + \textrm{Dilation})$ Packet Routing , 2013, IPCO.

[74]  Robert D. Kleinberg,et al.  On the capacity of information networks , 2006, IEEE Transactions on Information Theory.

[75]  Xin Wang,et al.  A reduction approach to the multiple-unicast conjecture in network coding , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[76]  Bernhard Haeupler,et al.  Faster Distributed Shortest Path Approximations via Shortcuts , 2018, DISC.