Algorithm 1020: Computation of Multi-Degree Tchebycheffian B-Splines

Multi-degree Tchebycheffian splines are splines with pieces drawn from extended (complete) Tchebycheff spaces, which may differ from interval to interval, and possibly of different dimensions. These are a natural extension of multi-degree polynomial splines. Under quite mild assumptions, they can be represented in terms of a so-called MDTB-spline basis; such basis possesses all the characterizing properties of the classical polynomial B-spline basis. We present a practical framework to compute MDTB-splines, and provide an object-oriented implementation inMatlab. The implementation supports the construction, differentiation, and visualization of MDTB-splines whose pieces belong to Tchebycheff spaces that are null-spaces of constantcoefficient linear differential operators. The construction relies on an extraction operator that maps local Tchebycheffian Bernstein functions to the MDTB-spline basis of interest.

[1]  Weiyin Ma,et al.  A generalized curve subdivision scheme of arbitrary order with a tension parameter , 2010, Comput. Aided Geom. Des..

[2]  Tom Lyche,et al.  Interpolation with Exponential B-Splines in Tension , 1993, Geometric Modelling.

[3]  Carolina Vittoria Beccari,et al.  Matrix representations for multi-degree B-splines , 2020, J. Comput. Appl. Math..

[4]  Carolina Vittoria Beccari,et al.  Design or not design? A numerical characterisation for piecewise Chebyshevian splines , 2018, Numerical Algorithms.

[5]  Ágoston Róth,et al.  Remark on Algorithm 992: An OpenGL- and C++-based Function Library for Curve and Surface Modeling in a Large Class of Extended Chebyshev Spaces , 2017, ACM Trans. Math. Softw..

[6]  Javier Sánchez-Reyes,et al.  Harmonic rational Bézier curves, p-Bézier curves and trigonometric polynomials , 1998, Comput. Aided Geom. Des..

[7]  J. M. Peña,et al.  Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .

[8]  Guozhao Wang,et al.  Unified and extended form of three types of splines , 2008 .

[9]  Wang Guo-zhao,et al.  A class of quasi Bézier curves based on hyperbolic polynomials , 2005 .

[10]  Michael Unser Cardinal exponential splines: part II - think analog, act digital , 2005, IEEE Transactions on Signal Processing.

[11]  Phillip J. Barry,et al.  de Boor-Fix dual functionals and algorithms for Tchebycheffian B-spline curves , 1996 .

[12]  Juan Manuel Peña,et al.  Critical lengths of cycloidal spaces are zeros of Bessel functions , 2017 .

[13]  Marie-Laurence Mazure,et al.  How to build all Chebyshevian spline spaces good for geometric design? , 2011, Numerische Mathematik.

[14]  Günther Nürnberger,et al.  Interpolation by generalized splines , 1983 .

[15]  Tom Lyche,et al.  Tchebycheffian B-Splines Revisited: An Introductory Exposition , 2019, Advanced Methods for Geometric Modeling and Numerical Simulation.

[16]  Gershon Elber,et al.  Geometric modeling with splines - an introduction , 2001 .

[17]  Marie-Laurence Mazure,et al.  Extended Chebyshev piecewise spaces characterised via weight functions , 2007, J. Approx. Theory.

[18]  Hendrik Speleers,et al.  Isogeometric collocation methods with generalized B-splines , 2015, Comput. Math. Appl..

[19]  Marie-Laurence Mazure,et al.  Finding all systems of weight functions associated with a given extended Chebyshev space , 2011, J. Approx. Theory.

[20]  Carla Manni,et al.  Generalized B-splines as a tool in Isogeometric Analysis , 2011 .

[21]  Larry L. Schumaker,et al.  Spline functions - basic theory, Third Edition , 2007, Cambridge mathematical library.

[22]  Carolina Vittoria Beccari,et al.  On multi-degree splines , 2017, Comput. Aided Geom. Des..

[23]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[24]  Tom Lyche,et al.  On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.

[25]  H. Prautzsch,et al.  A new approach to Tchebycheffian B-splines , 1997 .

[26]  P. Sattayatham,et al.  GB-splines of arbitrary order , 1999 .

[27]  Günther Nürnberger,et al.  Generalized Chebyshevian Splines , 1984 .

[28]  H. Speleers,et al.  Numerical approximation of GB-splines by a convolutional approach , 2017 .

[29]  Thierry Blu,et al.  Cardinal exponential splines: part I - theory and filtering algorithms , 2005, IEEE Transactions on Signal Processing.

[30]  Carolina Vittoria Beccari,et al.  Critical length: An alternative approach , 2019, J. Comput. Appl. Math..

[31]  Hendrik Speleers,et al.  A Tchebycheffian extension of multi-degree B-splines: Algorithmic computation and properties , 2020, Comput. Aided Geom. Des..

[32]  Hendrik Speleers,et al.  Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis , 2017 .

[33]  Marie-Laurence Mazure,et al.  Mixed hyperbolic/trigonometric spaces for design , 2012, Comput. Math. Appl..

[34]  Samuel Karlin,et al.  Chebyshevian Spline Functions , 1966 .

[35]  G. Mühlbach,et al.  Construction of B-splines for generalized spline spaces generated from local ECT-systems , 2003 .

[36]  Alessandra Sestini,et al.  Non-polynomial spline alternatives in Isogeometric Symmetric Galerkin BEM , 2017 .

[37]  Marie-Laurence Mazure,et al.  Constructing totally positive piecewise Chebyshevian B-spline bases , 2018, J. Comput. Appl. Math..

[38]  Helmut Pottmann,et al.  The geometry of Tchebycheffian splines , 1993, Comput. Aided Geom. Des..

[39]  Hendrik Speleers,et al.  Generalized B-Splines in Isogeometric Analysis , 2016 .

[40]  Hendrik Speleers,et al.  Computation of multi-degree B-splines , 2018, 1809.01598.