Non-hysteretic first-order phase transition with large latent heat and giant low-field magnetocaloric effect
暂无分享,去创建一个
A. Pathak | V. Pecharsky | Y. Mudryk | A. Rogalev | F. Guillou | D. Paudyal | F. Wilhelm | Arjun K. Pathak | François Guillou | F. Wilhelm
[1] V. Pecharsky,et al. Material-based figure of merit for caloric materials , 2018 .
[2] E. Brück,et al. A universal metric for ferroic energy materials , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[3] C. Marrows,et al. Coupled magnetic, structural, and electronic phase transitions in FeRh , 2016 .
[4] M. McHenry,et al. Curie Temperature Engineering in High Entropy Alloys for Magnetocaloric Applications , 2016, IEEE Magnetics Letters.
[5] A. Rogalev,et al. Magnetic circular dichroism in the hard X-ray range , 2015, The Physics of Metals and Metallography.
[6] S. A. Ketabi,et al. Electro-mechanical character of Gd and Gd2In and possibility of a Kondo-like behavior in Gd2In , 2014 .
[7] N. van Dijk,et al. Taming the First‐Order Transition in Giant Magnetocaloric Materials , 2014, Advanced materials.
[8] X. Moya,et al. Caloric materials near ferroic phase transitions. , 2014, Nature materials.
[9] Kaspar Kirstein Nielsen,et al. Materials Challenges for High Performance Magnetocaloric Refrigeration Devices , 2012 .
[10] K. Gschneidner,et al. On the nature of the magnetocaloric effect of the first-order magnetostructural transition , 2012 .
[11] Oliver Gutfleisch,et al. Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.
[12] A. Gloskovskii,et al. Electronic structure changes across the metamagnetic transition in FeRh via hard X-ray photoemission. , 2012, Physical review letters.
[13] A. Bhattacharyya,et al. A theoretical and experimental study of magnetism in Gd2In , 2012 .
[14] M. McHenry,et al. The effect of distributed exchange parameters on magnetocaloric refrigeration capacity in amorphous and nanocomposite materials , 2012 .
[15] Fujio Izumi,et al. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .
[16] G. D. de Wijs,et al. Mixed Magnetism for Refrigeration and Energy Conversion , 2011, 1203.0556.
[17] Christina H. Chen,et al. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011, Advanced materials.
[18] N. Trung,et al. Giant magnetocaloric effects by tailoring the phase transitions , 2010 .
[19] T. Lograsso,et al. Magnetostructural transition in Gd5Sb0.5Ge3.5 , 2009 .
[20] V. Hardy,et al. Derivation of the heat capacity anomaly at a first-order transition by using a semi-adiabatic relaxation technique , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[21] M. Richter,et al. Mechanism of the strong magnetic refrigerant performance of LaFe 13-x Si x , 2007 .
[22] K. Gschneidner,et al. Role of Ge in bridging ferromagnetism in the giant magnetocaloric Gd5(Ge1-xSix)4 alloys. , 2007, Physical review letters.
[23] B. Sales,et al. Ferrimagnetism in EuFe4Sb12 due to the interplay of f-electron moments and a nearly ferromagnetic host. , 2007, Physical review letters.
[24] M. Wuttig,et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width , 2006, Nature materials.
[25] K. Gschneidner,et al. Magnetic and magnetocaloric properties and the magnetic phase diagram of single-crystal dysprosium , 2005 .
[26] Richard A. Lancia,et al. A Comprehensive View , 2005 .
[27] K. Gschneidner,et al. X-ray powder diffractometer for in situ structural studies in magnetic fields from 0 to 35 kOe between 2.2 and 315 K , 2004 .
[28] J. Zimmer,et al. Crystal symmetry and the reversibility of martensitic transformations , 2004, Nature.
[29] K. Gschneidner,et al. Massive magnetic-field-induced structural transformation in Gd5Ge4 and the nature of the giant magnetocaloric effect. , 2003, Physical review letters.
[30] S. Fujieda,et al. Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .
[31] K. Gschneidner,et al. Recent developments in magnetocaloric materials , 2003 .
[32] F. D. Boer,et al. Transition‐Metal‐Based Magnetic Refrigerants for Room‐Temperature Applications. , 2002 .
[33] F. D. Boer,et al. Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.
[34] H. Wada,et al. Giant magnetocaloric effect of MnAs1−xSbx , 2001 .
[35] Vitalij K. Pecharsky,et al. Some common misconceptions concerning magnetic refrigerant materials , 2001 .
[36] F. Hu,et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .
[37] A. Rogalev,et al. X-ray magnetic circular dichroism of model Heisenberg ferromagnets , 2000 .
[38] D. Johrendt,et al. Equiatomic Intermetallic Europium Compounds: Syntheses, Crystal Chemistry, Chemical Bonding, and Physical Properties , 2000 .
[39] K. Gschneidner,et al. Heat capacity near first order phase transitions and the magnetocaloric effect: An analysis of the errors, and a case study of Gd5(Si2Ge2) and Dy , 1999 .
[40] A. Palenzona,et al. The Phase Diagram of the Eu—Sn System. , 1999 .
[41] K. Gschneidner,et al. MAGNETIC PHASE TRANSITIONS AND THE MAGNETOTHERMAL PROPERTIES OF GADOLINIUM , 1998 .
[42] K. Gschneidner,et al. Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .
[43] A. Lichtenstein,et al. First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .
[44] K. Gschneidner,et al. Superheating and other unusual observations regarding the first order phase transition in Dy , 1996 .
[45] Cox,et al. Simultaneous structural, magnetic, and electronic transitions in La1-xCaxMnO3 with x=0.25 and 0.50. , 1995, Physical review letters.
[46] D. Poelman,et al. A DETAILED XPS STUDY OF THE RARE-EARTH COMPOUNDS EUS AND EUF3. , 1995 .
[47] H. Micklitz,et al. Temperature induced valence instabilities in ternary Eu-pnictides: a comprehensive view , 1995 .
[48] A. Tishin. Magnetocaloric effect in strong magnetic fields , 1990 .
[49] Ove Jepsen,et al. Explicit, First-Principles Tight-Binding Theory , 1984 .
[50] Y. Yamaguchi,et al. Magnetic Phase Transitions in Itinerant Electron Magnets Hf 1− x Ta x Fe 2 , 1983 .
[51] J. Flahaut,et al. Filiation structurale des composés de formule générale AB2: Etude comparée des types Co2Si, Co2P, PbCl2, et SbSl , 1980 .
[52] A. Palenzona. The crystal structure and lattice constants of R.E.2In and some R.E.5In3 compounds , 1968 .
[53] C. Kittel. Introduction to solid state physics , 1954 .
[54] K. Schwarz,et al. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties , 2019 .
[55] B. Sales,et al. Temperature dependence of Eu 4f and Eu 5d magnetizations in the filled skutterudite EuFe4Sb12 , 2009 .
[56] M. L. Fornasini,et al. Crystal structures of Eu3Ga2, EuGa, Eu2In, EuIn and EuIn4 , 1990 .
[57] J. Yakinthos,et al. Magnetic characteristics of rare‐earth indium R2In (R=Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Tm) intermetallic compounds , 1979 .