Non-hysteretic first-order phase transition with large latent heat and giant low-field magnetocaloric effect

[1]  V. Pecharsky,et al.  Material-based figure of merit for caloric materials , 2018 .

[2]  E. Brück,et al.  A universal metric for ferroic energy materials , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  C. Marrows,et al.  Coupled magnetic, structural, and electronic phase transitions in FeRh , 2016 .

[4]  M. McHenry,et al.  Curie Temperature Engineering in High Entropy Alloys for Magnetocaloric Applications , 2016, IEEE Magnetics Letters.

[5]  A. Rogalev,et al.  Magnetic circular dichroism in the hard X-ray range , 2015, The Physics of Metals and Metallography.

[6]  S. A. Ketabi,et al.  Electro-mechanical character of Gd and Gd2In and possibility of a Kondo-like behavior in Gd2In , 2014 .

[7]  N. van Dijk,et al.  Taming the First‐Order Transition in Giant Magnetocaloric Materials , 2014, Advanced materials.

[8]  X. Moya,et al.  Caloric materials near ferroic phase transitions. , 2014, Nature materials.

[9]  Kaspar Kirstein Nielsen,et al.  Materials Challenges for High Performance Magnetocaloric Refrigeration Devices , 2012 .

[10]  K. Gschneidner,et al.  On the nature of the magnetocaloric effect of the first-order magnetostructural transition , 2012 .

[11]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[12]  A. Gloskovskii,et al.  Electronic structure changes across the metamagnetic transition in FeRh via hard X-ray photoemission. , 2012, Physical review letters.

[13]  A. Bhattacharyya,et al.  A theoretical and experimental study of magnetism in Gd2In , 2012 .

[14]  M. McHenry,et al.  The effect of distributed exchange parameters on magnetocaloric refrigeration capacity in amorphous and nanocomposite materials , 2012 .

[15]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[16]  G. D. de Wijs,et al.  Mixed Magnetism for Refrigeration and Energy Conversion , 2011, 1203.0556.

[17]  Christina H. Chen,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011, Advanced materials.

[18]  N. Trung,et al.  Giant magnetocaloric effects by tailoring the phase transitions , 2010 .

[19]  T. Lograsso,et al.  Magnetostructural transition in Gd5Sb0.5Ge3.5 , 2009 .

[20]  V. Hardy,et al.  Derivation of the heat capacity anomaly at a first-order transition by using a semi-adiabatic relaxation technique , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  M. Richter,et al.  Mechanism of the strong magnetic refrigerant performance of LaFe 13-x Si x , 2007 .

[22]  K. Gschneidner,et al.  Role of Ge in bridging ferromagnetism in the giant magnetocaloric Gd5(Ge1-xSix)4 alloys. , 2007, Physical review letters.

[23]  B. Sales,et al.  Ferrimagnetism in EuFe4Sb12 due to the interplay of f-electron moments and a nearly ferromagnetic host. , 2007, Physical review letters.

[24]  M. Wuttig,et al.  Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width , 2006, Nature materials.

[25]  K. Gschneidner,et al.  Magnetic and magnetocaloric properties and the magnetic phase diagram of single-crystal dysprosium , 2005 .

[26]  Richard A. Lancia,et al.  A Comprehensive View , 2005 .

[27]  K. Gschneidner,et al.  X-ray powder diffractometer for in situ structural studies in magnetic fields from 0 to 35 kOe between 2.2 and 315 K , 2004 .

[28]  J. Zimmer,et al.  Crystal symmetry and the reversibility of martensitic transformations , 2004, Nature.

[29]  K. Gschneidner,et al.  Massive magnetic-field-induced structural transformation in Gd5Ge4 and the nature of the giant magnetocaloric effect. , 2003, Physical review letters.

[30]  S. Fujieda,et al.  Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .

[31]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[32]  F. D. Boer,et al.  Transition‐Metal‐Based Magnetic Refrigerants for Room‐Temperature Applications. , 2002 .

[33]  F. D. Boer,et al.  Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.

[34]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[35]  Vitalij K. Pecharsky,et al.  Some common misconceptions concerning magnetic refrigerant materials , 2001 .

[36]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[37]  A. Rogalev,et al.  X-ray magnetic circular dichroism of model Heisenberg ferromagnets , 2000 .

[38]  D. Johrendt,et al.  Equiatomic Intermetallic Europium Compounds: Syntheses, Crystal Chemistry, Chemical Bonding, and Physical Properties , 2000 .

[39]  K. Gschneidner,et al.  Heat capacity near first order phase transitions and the magnetocaloric effect: An analysis of the errors, and a case study of Gd5(Si2Ge2) and Dy , 1999 .

[40]  A. Palenzona,et al.  The Phase Diagram of the Eu—Sn System. , 1999 .

[41]  K. Gschneidner,et al.  MAGNETIC PHASE TRANSITIONS AND THE MAGNETOTHERMAL PROPERTIES OF GADOLINIUM , 1998 .

[42]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[43]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[44]  K. Gschneidner,et al.  Superheating and other unusual observations regarding the first order phase transition in Dy , 1996 .

[45]  Cox,et al.  Simultaneous structural, magnetic, and electronic transitions in La1-xCaxMnO3 with x=0.25 and 0.50. , 1995, Physical review letters.

[46]  D. Poelman,et al.  A DETAILED XPS STUDY OF THE RARE-EARTH COMPOUNDS EUS AND EUF3. , 1995 .

[47]  H. Micklitz,et al.  Temperature induced valence instabilities in ternary Eu-pnictides: a comprehensive view , 1995 .

[48]  A. Tishin Magnetocaloric effect in strong magnetic fields , 1990 .

[49]  Ove Jepsen,et al.  Explicit, First-Principles Tight-Binding Theory , 1984 .

[50]  Y. Yamaguchi,et al.  Magnetic Phase Transitions in Itinerant Electron Magnets Hf 1− x Ta x Fe 2 , 1983 .

[51]  J. Flahaut,et al.  Filiation structurale des composés de formule générale AB2: Etude comparée des types Co2Si, Co2P, PbCl2, et SbSl , 1980 .

[52]  A. Palenzona The crystal structure and lattice constants of R.E.2In and some R.E.5In3 compounds , 1968 .

[53]  C. Kittel Introduction to solid state physics , 1954 .

[54]  K. Schwarz,et al.  WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties , 2019 .

[55]  B. Sales,et al.  Temperature dependence of Eu 4f and Eu 5d magnetizations in the filled skutterudite EuFe4Sb12 , 2009 .

[56]  M. L. Fornasini,et al.  Crystal structures of Eu3Ga2, EuGa, Eu2In, EuIn and EuIn4 , 1990 .

[57]  J. Yakinthos,et al.  Magnetic characteristics of rare‐earth indium R2In (R=Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Tm) intermetallic compounds , 1979 .