Hippocampal granule cell dispersion: a non-specific finding in pediatric patients with no history of seizures

[1]  O. Devinsky,et al.  Neuropathologic Changes in Sudden Unexplained Death in Childhood. , 2020, Journal of neuropathology and experimental neurology.

[2]  S. Sisodiya,et al.  Hippocampal morphometry in sudden and unexpected death in epilepsy , 2019, Neurology.

[3]  James W. MacDonald,et al.  PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice , 2019, eLife.

[4]  S. Shioda,et al.  Dentate granule progenitor cell properties are rapidly altered soon after birth , 2017, Brain Structure and Function.

[5]  E. Chang,et al.  Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults , 2018, Nature.

[6]  G. Bejerano,et al.  Mutations of AKT3 are associated with a wide spectrum of developmental disorders including extreme megalencephaly , 2017, Brain : a journal of neurology.

[7]  K. Schuurman,et al.  Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology , 2017, Journal of Neuroimmunology.

[8]  U. Egert,et al.  Seizure-Induced Motility of Differentiated Dentate Granule Cells Is Prevented by the Central Reelin Fragment , 2016, Front. Cell. Neurosci..

[9]  Jonathan P. Miller,et al.  Hippocampal Neurophysiologic Changes after Mild Traumatic Brain Injury and Potential Neuromodulation Treatment Approaches , 2016, Frontiers in Systems Neuroscience.

[10]  Amy E. Chadwick,et al.  Hippocampal malformation associated with sudden death in early childhood: a neuropathologic study , 2016, Forensic Science, Medicine, and Pathology.

[11]  G. Mills,et al.  Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy , 2015, eLife.

[12]  C. Verney,et al.  Dynamic Expression Patterns of Progenitor and Neuron Layer Markers in the Developing Human Dentate Gyrus and Fimbria , 2015, Cerebral cortex.

[13]  P. Buckmaster,et al.  Blockade of excitatory synaptogenesis with proximal dendrites of dentate granule cells following rapamycin treatment in a mouse model of temporal lobe epilepsy , 2015, The Journal of comparative neurology.

[14]  H. Kinney,et al.  Dentate gyrus abnormalities in sudden unexplained death in infants: morphological marker of underlying brain vulnerability , 2014, Acta Neuropathologica.

[15]  M. Frotscher,et al.  Epilepsy-induced motility of differentiated neurons. , 2014, Cerebral cortex.

[16]  M. Thom Review: Hippocampal sclerosis in epilepsy: a neuropathology review , 2014, Neuropathology and applied neurobiology.

[17]  F. Gage,et al.  How to make a hippocampal dentate gyrus granule neuron , 2014, Development.

[18]  J. Frank,et al.  Macrophagic and microglial responses after focal traumatic brain injury in the female rat , 2014, Journal of Neuroinflammation.

[19]  S. Moestrup,et al.  CD163 and inflammation: biological, diagnostic, and therapeutic aspects. , 2013, Antioxidants & redox signaling.

[20]  A. Sakamoto,et al.  Surgical and postmortem pathology studies: contribution for the investigation of temporal lobe epilepsy. , 2012, Arquivos de neuro-psiquiatria.

[21]  N. Matsuki,et al.  GABAergic excitation after febrile seizures induces ectopic granule cells and adult epilepsy , 2012, Nature Medicine.

[22]  M. Avoli,et al.  Jasper's basic mechanisms of the epilepsies , 2012 .

[23]  J. Shendure,et al.  De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes , 2012, Nature Genetics.

[24]  T. Dóczi,et al.  Degree and pattern of calbindin immunoreactivity in granule cells of the dentate gyrus differ in mesial temporal sclerosis, cortical malformation- and tumor-related epilepsies , 2011, Brain Research.

[25]  M. Frotscher,et al.  Granule cell dispersion in temporal lobe epilepsy is associated with changes in dendritic orientation and spine distribution , 2011, Experimental Neurology.

[26]  D. Spencer,et al.  Histopathology of human epilepsy , 2010 .

[27]  C. Chung,et al.  Neuropathologic and Clinical Features of Human Medial Temporal Lobe Epilepsy , 2010, Journal of clinical neurology.

[28]  M. Caleo,et al.  Impaired reelin processing and secretion by Cajal–Retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy , 2010, Hippocampus.

[29]  K. Kovács,et al.  Ontogeny of calbindin immunoreactivity in the human hippocampal formation with a special emphasis on granule cells of the dentate gyrus , 2009, International Journal of Developmental Neuroscience.

[30]  M. Frotscher,et al.  Exogenous reelin prevents granule cell dispersion in experimental epilepsy , 2009, Experimental Neurology.

[31]  C. Elger,et al.  Towards a clinico-pathological classification of granule cell dispersion in human mesial temporal lobe epilepsies , 2009, Acta Neuropathologica.

[32]  G. Oliver,et al.  Prox1 expression patterns in the developing and adult murine brain , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[33]  M. Frotscher,et al.  Granule cell dispersion is not accompanied by enhanced neurogenesis in temporal lobe epilepsy patients , 2007, Experimental Neurology.

[34]  C. Elger,et al.  A new clinico-pathological classification system for mesial temporal sclerosis , 2007, Acta Neuropathologica.

[35]  Naoki Nitta,et al.  Reelin Deficiency and Displacement of Mature Neurons, But Not Neurogenesis, Underlie the Formation of Granule Cell Dispersion in the Epileptic Hippocampus , 2006, The Journal of Neuroscience.

[36]  L. Martinian,et al.  Cell Proliferation and Granule Cell Dispersion in Human Hippocampal Sclerosis , 2005, Journal of neuropathology and experimental neurology.

[37]  M. Frotscher,et al.  Reelin is a positional signal for the lamination of dentate granule cells , 2004, Development.

[38]  H. Wieser,et al.  Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis , 2004 .

[39]  M. Frotscher,et al.  Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. , 2003, Cerebral cortex.

[40]  M. Frotscher,et al.  Malformation of the radial glial scaffold in the dentate gyrus of reeler mice, scrambler mice, and ApoER2/VLDLR‐deficient mice , 2003, The Journal of comparative neurology.

[41]  M. Frotscher,et al.  Role for Reelin in the Development of Granule Cell Dispersion in Temporal Lobe Epilepsy , 2002, The Journal of Neuroscience.

[42]  L. Martinian,et al.  Cytoarchitectural Abnormalities in Hippocampal Sclerosis , 2002, Journal of neuropathology and experimental neurology.

[43]  L. Seress,et al.  Cell formation in the human hippocampal formation from mid-gestation to the late postnatal period , 2001, Neuroscience.

[44]  M. Thom,et al.  Bilateral hippocampal granule cell dispersion: autopsy study of 3 infants , 2001, Neuropathology and applied neurobiology.

[45]  R. Prayson,et al.  Practical Differential Diagnosis in Surgical Neuropathology , 2000, Humana Press.

[46]  V. Lespinet,et al.  Correlations Between Granule Cell Dispersion, Mossy Fiber Sprouting, and Hippocampal Cell Loss in Temporal Lobe Epilepsy , 1999, Epilepsia.

[47]  D. Geschwind,et al.  Dentate Granule Cell Neurogenesis Is Increased by Seizures and Contributes to Aberrant Network Reorganization in the Adult Rat Hippocampus , 1997, The Journal of Neuroscience.

[48]  G. Mathern,et al.  Human Fascia Dentata Anatomy and Hippocampal Neuron Densities Differ Depending on the Epileptic Syndrome and Age at First Seizure , 1997, Journal of neuropathology and experimental neurology.

[49]  L. Sundstrom,et al.  Possible mechanisms inducing granule cell dispersion in humans with temporal lobe epilepsy , 1997, Epilepsy Research.

[50]  A. Wyler,et al.  Relationship of hippocampal sclerosis to duration and age of onset of epilepsy, and childhood febrile seizures in temporal lobectomy patients , 1996, Epilepsy Research.

[51]  T. Curran,et al.  A protein related to extracellular matrix proteins deleted in the mouse mutant reeler , 1995, Nature.

[52]  L. Eng,et al.  GFAP and Astrogliosis , 1994, Brain pathology.

[53]  D D Armstrong,et al.  The Neuropathology of Temporal Lobe Epilepsy , 1993, Journal of neuropathology and experimental neurology.

[54]  C. Houser Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy , 1990, Brain Research.

[55]  L. Mrzljak,et al.  Basal dendrites of granule cells are normal features of the fetal and adult dentate gyrus of both monkey and human hippocampal formations , 1987, Brain Research.

[56]  H. Kinney,et al.  The sudden infant death syndrome. , 1986, The New England journal of medicine.

[57]  P. Rakić,et al.  The time of origin of neurons in the hippocampal region of the rhesus monkey , 1981, The Journal of comparative neurology.

[58]  J. Altman,et al.  Hippocampal development in the rat: Cytogenesis and morphogenesis examined with autoradiography and low‐level X‐irradiation , 1974, The Journal of comparative neurology.

[59]  G. Rubboli,et al.  Role of dentate gyrus alterations in mesial temporal sclerosis. , 2010, Clinical neuropathology.

[60]  D. Amaral,et al.  The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). , 2007, Progress in brain research.

[61]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[62]  K. Hossmann,et al.  The hypoxic brain. Insights from ischemia research. , 1999, Advances in experimental medicine and biology.

[63]  K. Hossmann The Hypoxic Brain , 1999 .

[64]  T. Babb,et al.  Granule cell dispersion in relation to mossy fiber sprouting, hippocampal cell loss, silent period and seizure frequency in the pilocarpine model of epilepsy. , 1992, Epilepsy research. Supplement.

[65]  L Seress,et al.  Morphological variability and developmental aspects of monkey and human granule cells: differences between the rodent and primate dentate gyrus. , 1992, Epilepsy research. Supplement.