Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance.

[1]  Jana Reinhard,et al.  Applied Surfactants Principles And Applications , 2016 .

[2]  S. Paliwal,et al.  Effect of In Vitro Transcorneal Approach of Aceclofenac Eye Drops through Excised Goat, Sheep, and Buffalo Corneas , 2015, TheScientificWorldJournal.

[3]  B. Shin,et al.  Absolute bioavailability and metabolism of aceclofenac in rats , 2015, Archives of pharmacal research.

[4]  J. Hadgraft,et al.  Influence of lidocaine hydrochloride and penetration enhancers on the barrier function of human skin. , 2014, International journal of pharmaceutics.

[5]  F. Oesch,et al.  Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models , 2014, Archives of Toxicology.

[6]  H. Kählig,et al.  Simultaneous analysis of skin penetration of surfactant and active drug from fluorosurfactant-based microemulsions. , 2014, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[7]  S. Savić,et al.  Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design , 2014, Colloid and Polymer Science.

[8]  Gajanand Sharma,et al.  Topical Delivery of Aceclofenac: Challenges and Promises of Novel Drug Delivery Systems , 2014, BioMed research international.

[9]  Xiao-ling Fang,et al.  In vitro, ex vivo, and in vivo evaluation of the effect of saturated fat acid chain length on the transdermal behavior of ibuprofen-loaded microemulsions. , 2014, Journal of pharmaceutical sciences.

[10]  S. Srinivasan,et al.  Studies of the molecular geometry, vibrational spectra, frontier molecular orbital, nonlinear optical and thermodynamics properties of aceclofenac by quantum chemical calculations. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[11]  A. Yavaşoğlu,et al.  Preparation and evaluation of microemulsion formulations of naproxen for dermal delivery. , 2014, Chemical & pharmaceutical bulletin.

[12]  A. Nayak,et al.  Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. , 2014, Colloids and surfaces. B, Biointerfaces.

[13]  R. K. Mitra,et al.  Formulation and characterization of a biocompatible microemulsion composed of mixed surfactants: lecithin and Triton X-100 , 2014, Colloid and Polymer Science.

[14]  S. Saha,et al.  Physicochemical investigation of mixed surfactant microemulsions: water solubilization, thermodynamic properties, microstructure, and dynamics. , 2013, Journal of colloid and interface science.

[15]  H. Kählig,et al.  Application of quantitative (19) F nuclear magnetic resonance spectroscopy in tape-stripping experiments with natural microemulsions. , 2013, Journal of pharmaceutical sciences.

[16]  Yingcong Zhou,et al.  Adapalene microemulsion for transfollicular drug delivery. , 2013, Journal of pharmaceutical sciences.

[17]  A. Nayak,et al.  Aceclofenac-loaded unsaturated esterified alginate/gellan gum microspheres: in vitro and in vivo assessment. , 2013, International journal of biological macromolecules.

[18]  S. Chi,et al.  Formulation and biopharmaceutical evaluation of a transdermal patch containing aceclofenac , 2013, Archives of Pharmacal Research.

[19]  Sushama Talegaonkar,et al.  Microemulsion as a tool for the transdermal delivery of ondansetron for the treatment of chemotherapy induced nausea and vomiting. , 2013, Colloids and surfaces. B, Biointerfaces.

[20]  R. Neubert,et al.  Lecithin-Based Microemulsions for Targeted Delivery of Ceramide AP into the Stratum Corneum: Formulation, Characterizations, and In Vitro Release and Penetration Studies , 2012, Pharmaceutical Research.

[21]  R. Neubert,et al.  Polyglycerol fatty acid ester surfactant-based microemulsions for targeted delivery of ceramide AP into the stratum corneum: formulation, characterisation, in vitro release and penetration investigation. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[22]  A. Szűts,et al.  Sucrose esters as natural surfactants in drug delivery systems--a mini-review. , 2012, International journal of pharmaceutics.

[23]  V. Klang,et al.  Natural microemulsions: formulation design and skin interaction. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[24]  S. Savić,et al.  Compounding of a topical drug with prospective natural surfactant-stabilized pharmaceutical bases: physicochemical and in vitro/in vivo characterization--a ketoprofen case study. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[25]  M. Brunner,et al.  A new topical formulation enhances relative diclofenac bioavailability in healthy male subjects. , 2011, British journal of clinical pharmacology.

[26]  Y. Chevalier,et al.  Microemulsion Microstructure Influences the Skin Delivery of an Hydrophilic Drug , 2011, Pharmaceutical Research.

[27]  R. Müller,et al.  Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. , 2011, International journal of pharmaceutics.

[28]  N. Mortada,et al.  Visualization, dermatopharmacokinetic analysis and monitoring the conformational effects of a microemulsion formulation in the skin stratum corneum. , 2011, Journal of colloid and interface science.

[29]  Chi-Hsien Liu,et al.  Development and characterization of eucalyptol microemulsions for topic delivery of curcumin. , 2011, Chemical & pharmaceutical bulletin.

[30]  Omar K. Shoukry,et al.  Novel sugar esters proniosomes for transdermal delivery of vinpocetine: preclinical and clinical studies. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[31]  Rania M. Hathout,et al.  Microemulsion formulations for the transdermal delivery of testosterone. , 2010, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[32]  M. Gold,et al.  Systemic Bioavailability of Topical Diclofenac Sodium Gel 1% Versus Oral Diclofenac Sodium in Healthy Volunteers , 2010, Journal of clinical pharmacology.

[33]  C. Santilli,et al.  Structural changes of biocompatible neutral microemulsions stabilized by mixed surfactant containing soya phosphatidylcholine and their relationship with doxorubicin release. , 2008, Colloids and surfaces. B, Biointerfaces.

[34]  S. Mutalik,et al.  Chitosan and Enteric Polymer Based Once Daily Sustained Release Tablets of Aceclofenac: In Vitro and In Vivo Studies , 2008, AAPS PharmSciTech.

[35]  E. Acosta,et al.  Linker-based lecithin microemulsions for transdermal delivery of lidocaine. , 2008, International journal of pharmaceutics.

[36]  R. Neubert,et al.  Comparison of stratum corneum penetration and localization of a lipophilic model drug applied in an o/w microemulsion and an amphiphilic cream. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[37]  P. Boonme,et al.  Transdermal delivery of hydrophobic and hydrophilic local anesthetics from o/w and w/o Brij 97-based microemulsions. , 2007, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[38]  A. Dinda,et al.  Effect of the composition of lecithin/n-propanol/isopropyl myristate/water microemulsions on barrier properties of mice skin for transdermal permeation of tetracaine hydrochloride: in vitro. , 2006, Colloids and surfaces. B, Biointerfaces.

[39]  Martin Brunner,et al.  Favourable dermal penetration of diclofenac after administration to the skin using a novel spray gel formulation. , 2005, British journal of clinical pharmacology.

[40]  Y. Kalia,et al.  Skin permeation enhancement by sucrose esters: a pH-dependent phenomenon. , 2005, International journal of pharmaceutics.

[41]  Y. Kalia,et al.  Effects of Sucrose Oleate and Sucrose Laureate on in Vivo Human Stratum Corneum Permeability , 2003, Pharmaceutical Research.

[42]  Jae-Heon Yang,et al.  Preparation and evaluation of aceclofenac microemulsion for transdermal delivery system , 2002, Archives of pharmacal research.

[43]  I. Alberti,et al.  Assessment of Topical Bioavailability in vivo: The Importance of Stratum corneum Thickness , 2001, Skin Pharmacology and Physiology.

[44]  M. Lindberg,et al.  Unexpected skin barrier influence from nonionic emulsifiers. , 2000, International journal of pharmaceutics.

[45]  C. Goosen,et al.  The influence of the physicochemical characteristics and pharmacokinetic properties of selected NSAID's on their transdermal absorption. , 2000, International journal of pharmaceutics.

[46]  G. Wall,et al.  Oral versus topical NSAIDs in rheumatic diseases: a comparison. , 2000, Drugs.

[47]  M. Poelman,et al.  Bicontinuous sucrose ester microemulsion: a new vehicle for topical delivery of niflumic acid , 1998 .

[48]  D. Quintanar-Guerrero,et al.  Ex vivo oral mucosal permeation of lidocaine hydrochloride with sucrose fatty acid esters as absorption enhancers , 1998 .

[49]  J. Domenech,et al.  A comparative study of the transdermal penetration of a series of nonsteroidal antiinflammatory drugs. , 1997, Journal of pharmaceutical sciences.

[50]  Nishihata Toshiaki,et al.  Percutaneous absorption of diclofenac in rats and humans: aqueous gel formulation , 1988 .