Background and Clutter Mixture Distributions for Active Sonar Statistics

False alarms in active sonar systems arising from physical objects in the ocean (e.g., rocks, fish, or seaweed) are often called clutter. A variety of statistical models have been proposed for representing the sonar probability of false alarm (Pfa) in the presence of clutter, including the log-normal, generalized-Pareto, Weibull, and K distributions. However, owing to the potential sparseness of the clutter echoes within the analysis window, a mixture distribution comprising one of the clutter distributions and a Rayleigh-distributed envelope (i.e., an exponentially distributed intensity) to represent diffuse background scattering and noise is proposed. Parameter-estimation techniques based on the expectation-maximization (EM) algorithm are developed for mixtures containing the aforementioned clutter distributions. While the standard EM algorithm handles the mixture containing log-normal clutter, the EM-gradient algorithm, which combines the EM algorithm with a one-step Newton optimization, is necessary for the generalized-Pareto and Weibull cases. The mixture containing K -distributed clutter requires development of a variant of the EM algorithm exploiting method-of-moments parameter estimation. Evaluation of three midfrequency active-sonar data examples, spanning mildly to very heavy-tailed Pfa, illustrates that the mixture models provide a better fit than single-component models. As might be expected, inference on clutter-source scattering based on the shape parameter of the clutter distribution is shown to be less biased using the mixture model compared with a single-component distribution when the data contain both clutter echoes and diffuse background scattering or noise.

[1]  Robert Bares,et al.  Noise Estimation in Long-Range Matched-Filter Envelope Sonar Data , 2010, IEEE Journal of Oceanic Engineering.

[2]  S. Watts,et al.  The physics and modelling of discrete spikes in radar sea clutter , 2005, IEEE International Radar Conference, 2005..

[3]  A. Lyons,et al.  Statistical characterization of high-frequency shallow-water seafloor backscatter , 1999 .

[4]  Donald B. Percival,et al.  Maximum likelihood estimation of K distribution parameters for SAR data , 1993, IEEE Trans. Geosci. Remote. Sens..

[5]  A. Neath Testing Statistical Hypotheses (3rd ed.). E. L. Lehmann and Joseph P. Romano , 2006 .

[6]  Masoud Farshchian,et al.  The Pareto distribution for low grazing angle and high resolution X-band sea clutter , 2010, 2010 IEEE Radar Conference.

[7]  Dezhang Chu,et al.  Statistics of echoes from a directional sonar beam insonifying finite numbers of single scatterers and patches of scatterers. , 2009 .

[8]  Shawn F. Johnson,et al.  Modeling the Effect of Seafloor Ripples on Synthetic Aperture Sonar Speckle Statistics , 2010, IEEE Journal of Oceanic Engineering.

[9]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[10]  S. Stanic,et al.  Fluctuations of high‐frequency shallow‐water seafloor reverberation , 1992 .

[11]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[12]  D. Titterington Recursive Parameter Estimation Using Incomplete Data , 1984 .

[13]  Pei Jung Chung,et al.  Recursive K-distribution parameter estimation , 2005, IEEE Transactions on Signal Processing.

[14]  M. I. Ahmad,et al.  Modified anderson darling test , 1990 .

[15]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[16]  C. Harrison,et al.  Closed-form expressions for ocean reverberation and signal excess with mode stripping and Lambert's law. , 2003, The Journal of the Acoustical Society of America.

[17]  G. McLachlan,et al.  The EM Algorithm and Extensions: Second Edition , 2008 .

[18]  Karl Thomas Hjelmervik Predicting Sonar False Alarm Rate Inflation Using Acoustic Modeling and a High-Resolution Terrain Model , 2010, IEEE Journal of Oceanic Engineering.

[19]  D. Middleton New physical-statistical methods and models for clutter and reverberation: the KA-distribution and related probability structures , 1999 .

[20]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[21]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[22]  T. Barnard,et al.  Statistical normalization of spherically invariant non-Gaussian clutter , 2004, IEEE Journal of Oceanic Engineering.

[23]  D. Abraham,et al.  Using McDaniel's model to represent non-Rayleigh reverberation , 2001 .

[24]  James M Gelb,et al.  Statistics of Distinct Clutter Classes in Midfrequency Active Sonar , 2010, IEEE Journal of Oceanic Engineering.

[25]  B. R. La Cour,et al.  Statistical characterization of active sonar reverberation using extreme value theory , 2003 .

[26]  D. Chu,et al.  Non-Rayleigh Echoes From Resolved Individuals and Patches of Resonant Fish at 2–4 kHz , 2010, IEEE Journal of Oceanic Engineering.

[27]  Nicholas P Chotiros Non-Rayleigh Distributions in Underwater Acoustic Reverberation in a Patchy Environment , 2010, IEEE Journal of Oceanic Engineering.

[28]  Anthony P Lyons,et al.  Reliable Methods for Estimating the $K$-Distribution Shape Parameter , 2010, IEEE Journal of Oceanic Engineering.

[29]  D. Blacknell,et al.  Comparison of parameter estimators for K-distribution , 1994 .

[30]  M. Gensane A statistical study of acoustic signals backscattered from the sea bottom , 1989 .

[31]  Douglas A. Abraham,et al.  Novel physical interpretations of K-distributed reverberation , 2002 .

[32]  J.R. Preston,et al.  Non-Rayleigh reverberation characteristics near 400 Hz observed on the New Jersey shelf , 2004, IEEE Journal of Oceanic Engineering.

[33]  M. Prior,et al.  A scatterer map for the Malta plateau , 2005, IEEE Journal of Oceanic Engineering.

[34]  Hanumant Singh,et al.  Quantitative seafloor characterization using a bathymetric sidescan sonar , 1994 .

[35]  Boualem Boashash,et al.  A method for estimating the parameters of the K distribution , 1999, IEEE Trans. Signal Process..

[36]  K. D. Ward,et al.  Radar detection performance in sea clutter with discrete spikes , 2002, RADAR 2002.

[37]  Edwin K. P. Chong,et al.  An Introduction to Optimization: Chong/An Introduction , 2008 .

[38]  K. Ward,et al.  Sea clutter: Scattering, the K distribution and radar performance , 2007 .

[39]  B. Haywood,et al.  High grazing angle X-band sea clutter distributions , 2007 .

[40]  T. Lamont-Smith,et al.  Translation to the normal distribution for radar clutter , 2000 .

[41]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[42]  Sadaoki Furui,et al.  Maximum likelihood estimation of K-distribution parameters via the expectation-maximization algorithm , 2000, IEEE Trans. Signal Process..

[43]  D. M. Drumheller,et al.  Measurements and modeling of low-frequency near-surface scattering statistics , 2004, IEEE Journal of Oceanic Engineering.

[44]  Robert A. Altenburg,et al.  Acoustic backscattering at low grazing angles from the ocean bottom. Part II. Statistical characteristics of bottom backscatter at a shallow water site , 1984 .

[45]  J. Fialkowski,et al.  Methods for Identifying and Controlling Sonar Clutter , 2010, IEEE Journal of Oceanic Engineering.

[46]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[47]  W. H. Williams,et al.  Probability Theory and Mathematical Statistics , 1964 .

[48]  R. S. Raghavan,et al.  A method for estimating parameters of K-distributed clutter , 1991 .