High thermoelectric figure of merit in heavy hole dominated PbTe

Thermoelectric transport properties of p-type PbTe:Na, with high hole concentrations of approximately 1020 cm−3, are reinvestigated from room temperature to 750 K. The greatly enhanced Seebeck coefficient at these doping levels can be understood by the presence of a sharp increase in the density of states around the Fermi level. As a result, the thermoelectric figure of merit, zT, reaches ∼1.4 at 750 K. The influence of these heavy hole carriers may contribute to a similarly high zT observed in related p-type PbTe-based systems such as Tl-doped PbTe and nanostructured composite materials.

[1]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[2]  M. Mehl,et al.  Electronic structure calculations of lead chalcogenides PbS, PbSe, PbTe , 2002 .

[3]  H. Sitter,et al.  Structure of the second valence band in PbTe , 1977 .

[4]  Peter L. Balise,et al.  Thermoelectric Materials and Devices and Thermoelectricity , 1961 .

[5]  I. Kudman Thermoelectric properties of dilute PbTe-GeTe alloys , 1971 .

[6]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[7]  M. Kanatzidis,et al.  Impurity clustering and impurity-induced bands in PbTe-, SnTe-, and GeTe-based bulk thermoelectrics , 2009, 0911.2685.

[8]  Eric S. Toberer,et al.  High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping , 2010 .

[9]  David J. Singh Doping-dependent thermopower of PbTe from Boltzmann transport calculations , 2010 .

[10]  R. S. Allgaier Valence Bands in Lead Telluride , 1961 .

[11]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[12]  Y. Tsang,et al.  Calculation of the Temperature Dependence of the Energy Gaps in PbTe and SnTe , 1971 .

[13]  S. Mahanti,et al.  Energy and temperature dependence of relaxation time and Wiedemann-Franz law on PbTe , 2010 .

[14]  L. M. Rogers,et al.  VALENCE BAND STRUCTURE OF PbTe , 1968 .

[15]  J. Shea,et al.  Thermoelectrics Handbook- Macro to Nano [Book Review] , 2007, IEEE Electrical Insulation Magazine.

[16]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[17]  Michael A. McGuire,et al.  Phonon density of states and heat capacity of La 3 − x Te 4 , 2009 .

[18]  Ab initio studies of the electronic structure of defects in PbTe , 2006, cond-mat/0605538.

[19]  C Wood,et al.  Materials for thermoelectric energy conversion , 1988 .

[20]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[21]  L. M. Rogers,et al.  Interpretation of the Hall coefficient, electrical resistivity and Seebeck coefficient of p-type lead telluride , 1967 .

[22]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[23]  R. S. Allgaier,et al.  Hall Coefficient Behavior and the Second Valence Band in Lead Telluride , 1966 .

[24]  Kuei-Fang Hsu,et al.  Resonant states in the electronic structure of the high performance thermoelectrics AgPbmSbTe2+m: the role of Ag-Sb microstructures. , 2004, Physical review letters.

[25]  David J. Singh,et al.  Influence of band structure on the large thermoelectric performance of lanthanum telluride , 2009 .

[26]  Eric S. Toberer,et al.  Zintl Chemistry for Designing High Efficiency Thermoelectric Materials , 2010 .

[27]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[28]  M. Kanatzidis,et al.  Improvement in the Thermoelectric Figure of Merit by La/Ag Cosubstitution in PbTe , 2009 .