Analysis of Natural and Artificial Phenomena Using Signal Processing and Fractional Calculus

Abstract In this paper we study several natural and man-made complex phenomena in the perspective of dynamical systems. For each class of phenomena, the system outputs are time-series records obtained in identical conditions. The time-series are viewed as manifestations of the system behavior and are processed for analyzing the system dynamics. First, we use the Fourier transform to process the data and we approximate the amplitude spectra by means of power law functions. We interpret the power law parameters as a phenomenological signature of the system dynamics. Second, we adopt the techniques of non-hierarchical clustering and multidimensional scaling to visualize hidden relationships between the complex phenomena. Third, we propose a vector field based analogy to interpret the patterns unveiled by the PL parameters.

[1]  Clara-Mihaela Ionescu,et al.  The Human Respiratory System: An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics , 2013 .

[2]  A. Arenas,et al.  Community analysis in social networks , 2004 .

[3]  W. Li,et al.  Statistical analysis of airport network of China. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Rind,et al.  Complexity and climate , 1999, Science.

[5]  Arnab Chatterjee,et al.  Small-world properties of the Indian railway network. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Wei-Bin Zhang,et al.  Theory of Complex Systems and Economic Dynamics , 2002 .

[7]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[8]  Bruce D. Malamud,et al.  Earthquakes as a Complex System , 2002 .

[9]  J. T. Tenreiro Machado And I say to myself: “What a fractional world!” , 2011 .

[10]  Timothy J. Foxon,et al.  Towards a new complexity economics for sustainability , 2013 .

[11]  D. Sornette,et al.  Fractal Plate Tectonics , 2002, cond-mat/0202320.

[12]  Peter Nijkamp,et al.  Complex Network Phenomena in Telecommunication Systems , 2005 .

[13]  Trevor F. Cox,et al.  Metric multidimensional scaling , 2000 .

[14]  M. L. Sachtjen,et al.  Disturbances in a power transmission system , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[16]  Xintian Zhuang,et al.  A network analysis of the Chinese stock market , 2009 .

[17]  Shlomo Havlin,et al.  Long-term memory in earthquakes and the distribution of interoccurrence times , 2008 .

[18]  J. Foster From simplistic to complex systems in economics , 2005 .

[19]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  W. Arthur,et al.  Complexity and the economy , 2014, Science.

[21]  Bruce D. Malamud,et al.  Power-law correlations of landslide areas in central Italy , 2001 .

[22]  J. A. Tenreiro Machado,et al.  Accessing complexity from genome information , 2012 .

[23]  Z. M'Chirgui Small-world or Scale-Free Phenomena in Internet: What Implications for the Next-generation Networks? , 2012 .

[24]  黄亚明 PhysioBank , 2009 .

[25]  A. Barabasi,et al.  Evolution of the social network of scientific collaborations , 2001, cond-mat/0104162.

[26]  Rosario N. Mantegna,et al.  An Introduction to Econophysics: Contents , 1999 .

[27]  Xiaoming Zhang,et al.  How scale-free networks and large-scale collective cooperation emerge in complex homogeneous social systems. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[29]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[30]  J. A. Tenreiro Machado,et al.  A Multidimensional Scaling Analysis of Musical Sounds Based on Pseudo Phase Plane , 2012 .

[31]  S. Stein,et al.  Mid-Continent Earthquakes as a Complex System , 2009 .

[32]  Pathikrit Bhattacharya,et al.  A fractal model of earthquake occurrence: Theory, simulations and comparisons with the aftershock data , 2011 .

[33]  M. S. Keshner 1/f noise , 1982, Proceedings of the IEEE.

[34]  Alan Trounson,et al.  The persistence of memory , 2010, Nature Medicine.

[35]  J. A. Tenreiro Machado,et al.  A review of power laws in real life phenomena , 2012 .

[36]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[37]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[38]  S. Strogatz Exploring complex networks , 2001, Nature.

[39]  Danuta Makowiec,et al.  Multifractal estimates of monofractality in RR-heart series in power spectrum ranges , 2009 .

[40]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[41]  José António Tenreiro Machado,et al.  Analysis and Visualization of Seismic Data Using Mutual Information , 2013, Entropy.

[42]  Jianwei Wang,et al.  OPTIMIZED SCALE-FREE NETWORKS AGAINST CASCADING FAILURES , 2012 .

[43]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[44]  N. Johnson,et al.  Financial market complexity , 2003 .

[45]  A. Lopes,et al.  Dynamical behaviour of multi-particle large-scale systems , 2012 .

[46]  Thomas G. Robertazzi,et al.  Self-organizing communication networks , 1986, IEEE Communications Magazine.

[47]  Gyuchang Lim,et al.  Structure of a financial cross-correlation matrix under attack , 2009 .

[48]  António M. Lopes,et al.  Analysis of temperature time-series: Embedding dynamics into the MDS method , 2014, Commun. Nonlinear Sci. Numer. Simul..

[49]  Zbigniew R Struzik,et al.  Phase transition in a healthy human heart rate. , 2005, Physical review letters.

[50]  H. Stanley,et al.  Optimal paths in complex networks with correlated weights: the worldwide airport network. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Hermann Haken,et al.  Information and Self-Organization: A Macroscopic Approach to Complex Systems , 2010 .

[52]  António M. Lopes,et al.  Dynamical Analysis of the Global Warming , 2012 .