Thermodynamic Interpretation of the Quantum Error Correcting Criterion
暂无分享,去创建一个
[1] Shor,et al. Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[2] Its,et al. Temperature correlations of quantum spins. , 1992, Physical review letters.
[3] V. Korepin,et al. Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.
[4] S. Popescu,et al. Thermodynamics and the measure of entanglement , 1996, quant-ph/9610044.
[5] D. A. Lidar,et al. Power of anisotropic exchange interactions: Universality and efficient codes for quantum computing , 2002 .
[6] M. Freedman,et al. Topological Quantum Computation , 2001, quant-ph/0101025.
[7] Michal Horodecki,et al. Balance of information in bipartite quantum-communication systems: Entanglement-energy analogy , 2001 .
[8] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[9] E. Knill,et al. Theory of quantum error-correcting codes , 1997 .
[10] Steane,et al. Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.
[11] D A Lidar,et al. Reducing constraints on quantum computer design by encoded selective recoupling. , 2002, Physical review letters.
[12] K. B. Whaley,et al. Universal quantum computation with the exchange interaction , 2000, Nature.
[13] University of Toronto,et al. Encoded Universality in Physical Implementations of a Quantum Computer , 2001 .
[14] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[15] K. B. Whaley,et al. Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.
[16] P. Zanardi,et al. Noiseless Quantum Codes , 1997, quant-ph/9705044.
[17] E. Lieb,et al. Two Soluble Models of an Antiferromagnetic Chain , 1961 .
[18] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[19] K. B. Whaley,et al. Exact gate sequences for universal quantum computation using the XY interaction alone , 2001, quant-ph/0112014.
[20] V. Korepin. ADIABATIC TRANSPORT PROPERTIES AND BERRY’S PHASE IN HEISENBERG-ISING RING , 1991 .
[21] Gottesman. Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[22] N. J. A. Sloane,et al. Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.
[23] A. Winter,et al. Trading quantum for classical resources in quantum data compression , 2002, quant-ph/0204038.
[24] J. Preskill. Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[25] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[26] A. Osterloh,et al. Scaling of entanglement close to a quantum phase transition , 2002, Nature.
[27] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[28] A. Calderbank,et al. Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.
[29] Daniel Rohrlich. Thermodynamical analogues in quantum information theory , 2001 .
[30] D. Gottesman. Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.
[31] V. Korepin,et al. Correlators in the Heisenberg XXO chain as Fredholm determinants , 1992 .