Thermodynamic Interpretation of the Quantum Error Correcting Criterion

AbstractShannon's fundamental coding theorems relate classical information theory to thermodynamics. More recent theoretical work has been successful in relating quantum information theory to thermodynamics. For example, Schumacher proved a quantum version of Shannon's 1948 classical noiseless coding theorem. In this note, we extend the connection between quantum information theory and thermodynamics to include quantum error correction. There is a standard mechanism for describing errors that may occur during the transmission, storage, and manipulation of quantum information. One can formulate a criterion of necessary and sufficient conditions for the errors to be detectable and correctable. We show that this criterion has a thermodynamical interpretation. PACS: 03.67; 05.30; 63.10

[1]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  Its,et al.  Temperature correlations of quantum spins. , 1992, Physical review letters.

[3]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.

[4]  S. Popescu,et al.  Thermodynamics and the measure of entanglement , 1996, quant-ph/9610044.

[5]  D. A. Lidar,et al.  Power of anisotropic exchange interactions: Universality and efficient codes for quantum computing , 2002 .

[6]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[7]  Michal Horodecki,et al.  Balance of information in bipartite quantum-communication systems: Entanglement-energy analogy , 2001 .

[8]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[9]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[10]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[11]  D A Lidar,et al.  Reducing constraints on quantum computer design by encoded selective recoupling. , 2002, Physical review letters.

[12]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[13]  University of Toronto,et al.  Encoded Universality in Physical Implementations of a Quantum Computer , 2001 .

[14]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[15]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[16]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[17]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[18]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[19]  K. B. Whaley,et al.  Exact gate sequences for universal quantum computation using the XY interaction alone , 2001, quant-ph/0112014.

[20]  V. Korepin ADIABATIC TRANSPORT PROPERTIES AND BERRY’S PHASE IN HEISENBERG-ISING RING , 1991 .

[21]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[22]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[23]  A. Winter,et al.  Trading quantum for classical resources in quantum data compression , 2002, quant-ph/0204038.

[24]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  A. Osterloh,et al.  Scaling of entanglement close to a quantum phase transition , 2002, Nature.

[27]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[28]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[29]  Daniel Rohrlich Thermodynamical analogues in quantum information theory , 2001 .

[30]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[31]  V. Korepin,et al.  Correlators in the Heisenberg XXO chain as Fredholm determinants , 1992 .