SemEval-2019 Task 1: Cross-lingual Semantic Parsing with UCCA

We present the SemEval 2019 shared task on Universal Conceptual Cognitive Annotation (UCCA) parsing in English, German and French, and discuss the participating systems and results. UCCA is a cross-linguistically applicable framework for semantic representation, which builds on extensive typological work and supports rapid annotation. UCCA poses a challenge for existing parsing techniques, as it exhibits reentrancy (resulting in DAG structures), discontinuous structures and non-terminal nodes corresponding to complex semantic units. The shared task has yielded improvements over the state-of-the-art baseline in all languages and settings. Full results can be found in the task’s website https://competitions.codalab.org/competitions/19160.

[1]  Sheng Zhang,et al.  Selective Decoding for Cross-lingual Open Information Extraction , 2017, IJCNLP.

[2]  Robert Dixon Basic Linguistic Theory: methodology , 2010 .

[3]  Omri Abend,et al.  Reference-less Measure of Faithfulness for Grammatical Error Correction , 2018, NAACL.

[4]  Shiva Taslimipoor,et al.  GCN-Sem at SemEval-2019 Task 1: Semantic Parsing using Graph Convolutional and Recurrent Neural Networks , 2019, SemEval@NAACL-HLT.

[5]  Ari Rappoport,et al.  Multitask Parsing Across Semantic Representations , 2018, ACL.

[6]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[7]  Ari Rappoport,et al.  UCCAApp: Web-application for Syntactic and Semantic Phrase-based Annotation , 2017, ACL.

[8]  Tomas Mikolov,et al.  Enriching Word Vectors with Subword Information , 2016, TACL.

[9]  Ari Rappoport,et al.  Simple and Effective Text Simplification Using Semantic and Neural Methods , 2018, ACL.

[10]  Weiwei Sun,et al.  CUNY-PKU Parser at SemEval-2019 Task 1: Cross-Lingual Semantic Parsing with UCCA , 2019, SemEval@NAACL-HLT.

[11]  Dan Klein,et al.  A Minimal Span-Based Neural Constituency Parser , 2017, ACL.

[12]  Noah A. Smith,et al.  Toward Abstractive Summarization Using Semantic Representations , 2018, NAACL.

[13]  Johannes Heinecke,et al.  MaskParse@Deskin at SemEval-2019 Task 1: Cross-lingual UCCA Semantic Parsing using Recursive Masked Sequence Tagging , 2019, SemEval@NAACL-HLT.

[14]  Philipp Koehn,et al.  Abstract Meaning Representation for Sembanking , 2013, LAW@ACL.

[15]  Ari Rappoport,et al.  Universal Conceptual Cognitive Annotation (UCCA) , 2013, ACL.

[16]  Tobias Pütz,et al.  Tüpa at SemEval-2019 Task1: (Almost) feature-free Semantic Parsing , 2019, SemEval@NAACL-HLT.

[17]  Dian Yu,et al.  UC Davis at SemEval-2019 Task 1: DAG Semantic Parsing with Attention-based Decoder , 2019, SemEval@NAACL-HLT.

[18]  Sheng Zhang,et al.  Cross-lingual Decompositional Semantic Parsing , 2018, EMNLP.

[19]  Ari Rappoport,et al.  Conceptual Annotations Preserve Structure Across Translations: A French-English Case Study , 2015 .

[20]  Robert Dixon Basic Linguistic Theory: further grammatical topics , 2012 .

[21]  Ari Rappoport,et al.  A Transition-Based Directed Acyclic Graph Parser for UCCA , 2017, ACL.

[22]  Sheng Zhang,et al.  Universal Decompositional Semantics on Universal Dependencies , 2016, EMNLP.

[23]  Johan Bos,et al.  The Parallel Meaning Bank: Towards a Multilingual Corpus of Translations Annotated with Compositional Meaning Representations , 2017, EACL.

[24]  Guillaume Lample,et al.  Word Translation Without Parallel Data , 2017, ICLR.

[25]  Xiaohui Yan,et al.  Abstract Meaning Representation for Paraphrase Detection , 2018, NAACL.

[26]  Trung Tran,et al.  DANGNT@UIT.VNU-HCM at SemEval 2019 Task 1: Graph Transformation System from Stanford Basic Dependencies to Universal Conceptual Cognitive Annotation (UCCA) , 2019, *SEMEVAL.

[27]  Wei Jiang,et al.  HLT@SUDA at SemEval-2019 Task 1: UCCA Graph Parsing as Constituent Tree Parsing , 2019, *SEMEVAL.

[28]  Sampo Pyysalo,et al.  Universal Dependencies v1: A Multilingual Treebank Collection , 2016, LREC.

[29]  Yusuke Miyao,et al.  SemEval 2015 Task 18: Broad-Coverage Semantic Dependency Parsing , 2015, *SEMEVAL.

[30]  Ondrej Bojar,et al.  HUME: Human UCCA-Based Evaluation of Machine Translation , 2016, EMNLP.

[31]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[32]  Harish Karnick,et al.  Text Summarization using Abstract Meaning Representation , 2017, ArXiv.

[33]  Robert Dixon,et al.  Basic Linguistic Theory: grammatical topics , 2010 .

[34]  Stephan Oepen,et al.  Towards Comparability of Linguistic Graph Banks for Semantic Parsing , 2016, LREC.

[35]  Ari Rappoport,et al.  The State of the Art in Semantic Representation , 2017, ACL.

[36]  Stephan Oepen,et al.  Broad-Coverage Semantic Dependency Parsing , 2014 .