Simple consistent estimators of stable distribution parameters

The four parameters of a stable distribution may be estimated consistently from five pre-determined sample quantiles with the aid of the accompanying tables, for a in the range [0.6, 2.0] and g in the range [-1, 1]. The problem of the discontinuity of the traditional location parameter in the asymmetrical cases as a passes unity is resolved. The proposed estimators of a and c are similar to those of Fama and Roll, except that the small asymptotic bias in their estimators has been eliminated, and their restrictions that a be no less than 1.0 and that the distribution be symmetrical have been relaxed. The proposed estimators can provide good initialization values for other more efficient, but computer-intensive, methods.

[1]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[2]  H. Bergström,et al.  On some expansions of stable distribution functions , 1952 .

[3]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[4]  V. Zolotarev Mellin-Stieltjes Transforms in Probability Theory , 1957 .

[5]  M. Kendall,et al.  The Advanced Theory of Statistics: Vol. I—Distribution Theory , 1959 .

[6]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[7]  E. Fama,et al.  Some Properties of Symmetric Stable Distributions , 1968 .

[8]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[9]  E. Fama,et al.  Parameter Estimates for Symmetric Stable Distributions , 1971 .

[10]  S. James Press,et al.  Estimation in Univariate and Multivariate Stable Distributions , 1972 .

[11]  Bruce D. Fielitz,et al.  Asymmetric Stable Distributions of Stock Price Changes , 1972 .

[12]  Edwin L. Crow,et al.  Tables and graphs of the stable probability density functions , 1973 .

[13]  A. Paulson,et al.  The estimation of the parameters of the stable laws , 1975 .

[14]  W. DuMouchel Stable Distributions in Statistical Inference: 2. Information from Stably Distributed Samples , 1975 .

[15]  Robert A. Leitch,et al.  Estimation of Stable Law Parameters: Stock Price Behavior Application , 1975 .

[16]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[17]  Ruth W Arad,et al.  Parameter Estimation for Symmetric Stable Distribution , 1980 .

[18]  Statistical estimates of the parameters of stable laws , 1980 .

[19]  Ioannis A. Koutrouvelis,et al.  Regression-Type Estimation of the Parameters of Stable Laws , 1980 .

[20]  I. A. Koutrouvelis An iterative procedure for the estimation of the parameters of stable laws , 1981 .

[21]  B. M. Brown,et al.  High-Efficiency Estimation for the Positive Stable Laws , 1981 .

[22]  P. Hall A Comedy of Errors: The Canonical Form for a Stable Characteristic Function , 1981 .

[23]  Yuk-chow So The stable Paretian distribution of foreign exchange rate movement, nonstationarity and martingale : an empirical analysis , 1983 .

[24]  A. S. Paulson,et al.  Modified weighted squared error estimation procedures with special emphasis on the stable laws , 1985 .