Three-dimensionally engineered porous silicon electrodes for Li ion batteries.

The ultimate goal of Li ion battery design should consist of fully accessible metallic current collectors, possibly of nanoscale dimensions, intimately in contact with high capacity stable electrode materials. Here we engineer three-dimensional porous nickel based current collector coated conformally with layers of silicon, which typically suffers from poor cycle life, to form high-capacity electrodes. These binder/conductive additive free silicon electrodes show excellent electrode adhesion resulting in superior cyclic stability and rate capability. The nickel current collector design also allows for an increase in silicon loading per unit area leading to high areal discharge capacities of up to 0.8 mAh/cm(2) without significant loss in rate capability. An excellent electrode utilization (∼85%) and improved cyclic stability for the metal/silicon system is attributed to reduced internal stresses/fracture upon electrode expansion during cycling and shorter ionic/electronic diffusion pathways that help in improving the rate capability of thicker silicon layers.

[1]  S. T. Picraux,et al.  The effect of metal silicide formation on silicon nanowire-based lithium-ion battery anode capacity , 2012 .

[2]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[3]  Hui Wu,et al.  Engineering empty space between Si nanoparticles for lithium-ion battery anodes. , 2012, Nano letters.

[4]  D. He,et al.  Performance of Si–Ni nanorod as anode for Li-ion batteries , 2011 .

[5]  Xiangyun Song,et al.  Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes , 2011, Advanced materials.

[6]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[7]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[8]  James R McDonough,et al.  Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. , 2011, Chemical communications.

[9]  Yi Cui,et al.  Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries , 2010 .

[10]  Mark F. Mathias,et al.  Electrochemistry and the Future of the Automobile , 2010 .

[11]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[12]  S. Pané,et al.  Nanocrystalline Electroplated Cu–Ni: Metallic Thin Films with Enhanced Mechanical Properties and Tunable Magnetic Behavior , 2010 .

[13]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[14]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[15]  Wanli Xu,et al.  Nickel monosilicide contact formation in electrolessly etched silicon nanowires deposited onto nickel electrodes , 2009 .

[16]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[17]  C. Chien,et al.  Exploiting finite size effects in a novel core/shell microstructure , 2008 .

[18]  M. Armand,et al.  Building better batteries , 2008, Nature.

[19]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[20]  Bruno Scrosati,et al.  High‐Rate, Long‐Life Ni–Sn Nanostructured Electrodes for Lithium‐Ion Batteries , 2007 .

[21]  Jeffrey W Long,et al.  Architectural design, interior decoration, and three-dimensional plumbing en route to multifunctional nanoarchitectures. , 2007, Accounts of chemical research.

[22]  Doron Aurbach,et al.  Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes , 2007 .

[23]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[24]  T. Takamura,et al.  High capacity and long cycle life silicon anode for Li-ion battery , 2006 .

[25]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[26]  T. Takamura,et al.  Thick vacuum deposited silicon films suitable for the anode of Li-ion battery , 2005 .

[27]  Yung-Eun Sung,et al.  Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries , 2004 .

[28]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[29]  C. Chien,et al.  Fabrication of Nanoporous Nickel by Electrochemical Dealloying , 2004 .

[30]  T. Takamura,et al.  A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life , 2004 .

[31]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[32]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[33]  H. Lee,et al.  Stress effect on cycle properties of the silicon thin-film anode , 2001 .

[34]  Kunio Nishimura,et al.  Recent development of carbon materials for Li ion batteries , 2000 .

[35]  T. Brousse,et al.  Amorphous silicon as a possible anode material for Li-ion batteries , 1999 .

[36]  A. Russell,et al.  The Development of a Stable Citrate Electrolyte for the Electrodeposition of Copper‐Nickel Alloys , 1998 .

[37]  M. Endo,et al.  A Mechanism of Lithium Storage in Disordered Carbons , 1994, Science.