Pharmazeutisches Produktdesign: Gezielte Freisetzung von Wirkstoffen durch unterschiedliche Extrusionstechniken

Beim Design pharmazeutischer Produkte ist die Freisetzung nicht allein wichtig, aber von besonderer Bedeutung. Je nach Eigenschaften der zu verarbeitenden Wirkstoffe und Therapieziel beinhaltet die gezielte Freisetzung unterschiedliche Aufgabenstellungen. Es werden drei Techniken der pharmazeutischen Extrusion, die Feuchtextrusion, die Festfettextrusion und die Schmelzextrusion, vorgestellt und deren Moglichkeiten und Grenzen zur Beeinflussung der Freisetzung beschrieben. Das groste Potenzial zum Freisetzungsdesign bietet die Schmelzextrusion. Je nach Auswahl der Matrixbildner und der Verarbeitung lassen sich alle Aufgabenstellungen hinsichtlich der Freisetzung losen. Dissolution is not the only but a major issue in the design of pharmaceutical products. The technological tasks differ depending on the properties of the active pharmaceutical ingredient and the therapeutic goal. Three extrusion techniques, wet extrusion, solid lipid extrusion and melt extrusion, are introduced and their potential and limits with respect to dissolution profiles are described. The most flexible design of dissolution profiles can be achieved by melt extrusion. Depending on the selected matrix material and the process parameters all types of dissolution profiles can be achieved.

[1]  Geert Verreck,et al.  Increased physical stability and improved dissolution properties of itraconazole, a class II drug, by solid dispersions that combine fast- and slow-dissolving polymers. , 2004, Journal of pharmaceutical sciences.

[2]  J. Newton,et al.  Thermal Studies on the Interaction of Water and Microcrystalline Cellulose , 1988, The Journal of pharmacy and pharmacology.

[3]  P York,et al.  Solubility parameters as predictors of miscibility in solid dispersions. , 1999, Journal of pharmaceutical sciences.

[4]  P. Kleinebudde,et al.  Production of pellets via extrusion-spheronisation without the incorporation of microcrystalline cellulose: a critical review. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[5]  Charles E. Martin,et al.  Pharmaceutical Applications of Hot-Melt Extrusion: Part I , 2007, Drug development and industrial pharmacy.

[6]  C Vervaet,et al.  Influence of formulation and process parameters on the release characteristics of ethylcellulose sustained-release mini-matrices produced by hot-melt extrusion. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[7]  P. Kleinebudde,et al.  Understanding the solid-state behaviour of triglyceride solid lipid extrudates and its influence on dissolution. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[8]  Sheng Qi,et al.  Characterisation and Prediction of Phase Separation in Hot-Melt Extruded Solid Dispersions: A Thermal, Microscopic and NMR Relaxometry Study , 2010, Pharmaceutical Research.

[9]  P. Kleinebudde,et al.  Tailor-made dissolution profiles by extruded matrices based on lipid polyethylene glycol mixtures. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[10]  J. Breitenbach Melt extrusion: from process to drug delivery technology. , 2002, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[11]  Jean Paul Remon,et al.  Evaluation of injection moulding as a pharmaceutical technology to produce matrix tablets. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[12]  J. Breitenbach Melt extrusion can bring new benefits to HIV therapy , 2006 .

[13]  J. Breitkreutz,et al.  Immediate release pellets with lipid binders obtained by solvent-free cold extrusion. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[14]  M. Soliva,et al.  Hot extruded dosage forms. I. Technology and dissolution kinetics of polymeric matrices. , 1971, Pharmaceutica acta Helvetiae.

[15]  B. Sarmento,et al.  Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. , 2007, Drug discovery today.

[16]  Peter Kleinebudde,et al.  Mechanism of drug release from polymethacrylate-based extrudates and milled strands prepared by hot-melt extrusion. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[17]  Peter Kleinebudde,et al.  The Crystallite-Gel-Model for Microcrystalline Cellulose in Wet-Granulation, Extrusion, and Spheronization , 1997, Pharmaceutical Research.

[18]  K. Nagapudi,et al.  Manufacture of pharmaceutical co-crystals using twin screw extrusion: a solvent-less and scalable process. , 2010, Journal of pharmaceutical sciences.

[19]  G. Van den Mooter,et al.  Review: physical chemistry of solid dispersions , 2009 .

[20]  Lieven Baert,et al.  Improved bioavailability of darunavir by use of kappa-carrageenan versus microcrystalline cellulose as pelletisation aid. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[21]  Patrick J. Marsac,et al.  Theoretical and Practical Approaches for Prediction of Drug–Polymer Miscibility and Solubility , 2006, Pharmaceutical Research.

[22]  J. Newton,et al.  Microcrystalline Cellulose as a Sponge as an Alternative Concept to the Crystallite-Gel Model for Extrusion and Spheronization , 1998, Pharmaceutical Research.

[23]  Vaishali A. Kilor,et al.  Development and Characterization of Enteric-Coated Immediate-Release Pellets of Aceclofenac by Extrusion/Spheronization Technique Using κ-Carrageenan as a Pelletizing Agent , 2010, AAPS PharmSciTech.

[24]  Veerle Cnudde,et al.  Development of injection moulded matrix tablets based on mixtures of ethylcellulose and low-substituted hydroxypropylcellulose. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[25]  P. Kleinebudde,et al.  Use of crospovidone as pelletization aid as alternative to microcrystalline cellulose: effects on pellet properties , 2009, Drug development and industrial pharmacy.

[26]  Gerhard Winter,et al.  Lipid extrudates as novel sustained release systems for pharmaceutical proteins. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[27]  Peng Wang,et al.  Effects of extrusion process parameters on the dissolution behavior of indomethacin in Eudragit E PO solid dispersions. , 2010, International journal of pharmaceutics.

[28]  C. Liew,et al.  Functionality of Cross-Linked Polyvinylpyrrolidone as a Spheronization Aid: A Promising Alternative to Microcrystalline Cellulose , 2005, Pharmaceutical Research.

[29]  Michael A Repka,et al.  Applications of hot-melt extrusion for drug delivery , 2008, Expert opinion on drug delivery.

[30]  Klemens Kohlgrüber Co-rotating twin-screw extruders , 2008 .

[31]  P. Kleinebudde,et al.  Influence of thermal and thermo-mechanical treatment , 2007 .

[32]  T. Rades,et al.  Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. , 2001, International journal of pharmaceutics.

[33]  Peter Kleinebudde,et al.  Controlled release of active as a consequence of the die diameter in solid lipid extrusion. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[34]  P. Kleinebudde,et al.  “MCC SANAQ®burst”—A New Type of Cellulose and its Suitability to Prepare Fast Disintegrating Pellets , 2010, Journal of Pharmaceutical Innovation.

[35]  P. Kleinebudde,et al.  Spheronization of solid lipid extrudates , 2009 .

[36]  J. Siepmann,et al.  Lipid implants as drug delivery systems , 2008 .