Pathways and substrate-specific regulation of amino acid degradation in Phaeobacter inhibens DSM 17395 (archetype of the marine Roseobacter clade).

Combining omics and enzymatic approaches, catabolic routes of nine selected amino acids (tryptophan, phenylalanine, methionine, leucine, isoleucine, valine, histidine, lysine and threonine) were elucidated in substrate-adapted cells of Phaeobacter inhibens DSM 17395 (displaying conspicuous morphotypes). The catabolic network [excluding tricarboxylic acid (TCA) cycle] was reconstructed from 71 genes (scattered across the chromosome; one-third newly assigned), with 69 encoded proteins and 20 specific metabolites identified, and activities of 10 different enzymes determined. For example, Ph. inhibens DSM 17395 does not degrade lysine via the widespread saccharopine pathway but might rather employ two parallel pathways via 5-aminopentanoate or 2-aminoadipate. Tryptophan degradation proceeds via kynurenine and 2-aminobenzoate; the latter is metabolized as known from Azoarcus evansii. Histidine degradation is analogous to the Pseudomonas-type Hut pathway via N-formyl-l-glutamate. For threonine, only one of the three genome-predicted degradation pathways (employing threonine 3-dehydrogenase) is used. Proteins of the individual peripheral degradation sequences in Ph. inhibens DSM 17395 were apparently substrate-specifically formed contrasting the non-modulated TCA cycle enzymes. Comparison of genes for the reconstructed amino acid degradation network in Ph. inhibens DSM 17395 across 27 other complete genomes of Roseobacter clade members revealed most of them to be widespread among roseobacters.

[1]  Y. Ishimura [52] l-tryptophan 2,3-dioxygenase (tryptophan pyrrolase) (pseudomonas fluorescens) , 1970 .

[2]  S. Yeaman,et al.  The 2-oxo acid dehydrogenase complexes: recent advances. , 1989, The Biochemical journal.

[3]  L. Gram,et al.  Ecology, Inhibitory Activity, and Morphogenesis of a Marine Antagonistic Bacterium Belonging to the Roseobacter Clade , 2005, Applied and Environmental Microbiology.

[4]  R. Bender,et al.  Regulation of the Histidine Utilization (Hut) System in Bacteria , 2012, Microbiology and Molecular Reviews.

[5]  T. Bücher,et al.  Molar absorptivities of beta-NADH and beta-NADPH. , 1976, Clinical chemistry.

[6]  Ian T. Paulsen,et al.  Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment , 2004, Nature.

[7]  W. Wood,et al.  Basis for AMP activation of “Biodegradative” threonine dehydrase from Escherichia coli , 1964 .

[8]  J. Finkelstein,et al.  Methionine metabolism in mammals. , 1990, The Journal of nutritional biochemistry.

[9]  H. Sakuraba,et al.  Highly Stable l-Lysine 6-Dehydrogenase from the Thermophile Geobacillus stearothermophilus Isolated from a Japanese Hot Spring: Characterization, Gene Cloning and Sequencing, and Expression , 2004, Applied and Environmental Microbiology.

[10]  R. Reinhardt,et al.  Functional proteomic view of metabolic regulation in “Aromatoleum aromaticum” strain EbN1 , 2007, Proteomics.

[11]  V. Brecht,et al.  Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: The ethylmalonyl-CoA pathway , 2007, Proceedings of the National Academy of Sciences.

[12]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[13]  R. Reinhardt,et al.  Substrate-Dependent Regulation of Anaerobic Degradation Pathways for Toluene and Ethylbenzene in a Denitrifying Bacterium, Strain EbN1 , 2005, Journal of bacteriology.

[14]  R. Reinhardt,et al.  Physiological and Proteomic Adaptation of “Aromatoleum aromaticum” EbN1 to Low Growth Rates in Benzoate-Limited, Anoxic Chemostats , 2012, Journal of bacteriology.

[15]  J. García,et al.  Identification and analysis of a glutaryl-CoA dehydrogenase-encoding gene and its cognate transcriptional regulator from Azoarcus sp. CIB. , 2008, Environmental microbiology.

[16]  J. Heider,et al.  Microbial degradation of aromatic compounds — from one strategy to four , 2011, Nature Reviews Microbiology.

[17]  M. Göker,et al.  Molecular and phenotypic analyses reveal the non-identity of the Phaeobacter gallaeciensis type strain deposits CIP 105210T and DSM 17395. , 2013, International journal of systematic and evolutionary microbiology.

[18]  Haiwei Luo,et al.  Genome content of uncultivated marine Roseobacters in the surface ocean. , 2012, Environmental microbiology.

[19]  R. Raines,et al.  Mechanistic studies on reactions of bacterial methionine gamma-lyase with olefinic amino acids. , 1981, Biochemistry.

[20]  H. Hayashi,et al.  Branched-chain amino-acid aminotransferase of Escherichia coli. , 2000, Methods in enzymology.

[21]  J. Gasol,et al.  Seasonal Variations in the Contributions of Different Bacterial Groups to the Uptake of Low-Molecular-Weight Compounds in Northwestern Mediterranean Coastal Waters , 2007, Applied and Environmental Microbiology.

[22]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[23]  B. Blasius,et al.  Biological versus technical variability in 2‐D DIGE experiments with environmental bacteria , 2011, Proteomics.

[24]  Pablo N. Hess,et al.  An empirical test of the midpoint rooting method , 2007, Biological journal of the Linnean Society. Linnean Society of London.

[25]  The UniProt Consortium,et al.  Reorganizing the protein space at the Universal Protein Resource (UniProt) , 2011, Nucleic Acids Res..

[26]  Y. Itoh,et al.  Histidine Catabolism and Catabolite Regulation , 2007 .

[27]  S. Schulz,et al.  Tropodithietic Acid Production in Phaeobacter gallaeciensis Is Regulated by N-Acyl Homoserine Lactone-Mediated Quorum Sensing , 2011, Journal of bacteriology.

[28]  R. Amann,et al.  Substrate-Controlled Succession of Marine Bacterioplankton Populations Induced by a Phytoplankton Bloom , 2012, Science.

[29]  R. Rabus,et al.  Proteomic analysis of carbohydrate catabolism and regulation in the marine bacterium Rhodopirellula baltica , 2005, Proteomics.

[30]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[31]  Jacob H. Jacob,et al.  Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium. , 2013, Environmental microbiology.

[32]  R. Bode,et al.  Lysine degradation in Pichia guilliermondii: Characterization of a novel enzyme, L‐lysine:pyruvate aminotransferase , 1987 .

[33]  R. S. Conrad,et al.  Branched-chain amino acid catabolism in bacteria. , 1976, Bacteriological reviews.

[34]  D. Schomburg,et al.  Growth phase‐dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter‐clade , 2009, Proteomics.

[35]  H. Bisswanger Substrate specificity of the pyruvate dehydrogenase complex from Escherichia coli. , 1981, The Journal of biological chemistry.

[36]  Dietmar Schomburg,et al.  EnzymeDetector: an integrated enzyme function prediction tool and database , 2011, BMC Bioinformatics.

[37]  I-Min A. Chen,et al.  The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata , 2011, Nucleic Acids Res..

[38]  R. Pocklington Determination of nanomolar quantities of free amino acids dissolved in North Atlantic Ocean waters. , 1972, Analytical biochemistry.

[39]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[40]  J. Fothergill,et al.  Catabolism of L-lysine by Pseudomonas aeruginosa. , 1977, Journal of general microbiology.

[41]  P. Arruda,et al.  Lysine degradation through the saccharopine pathway in bacteria: LKR and SDH in bacteria and its relationship to the plant and animal enzymes , 2012, FEBS letters.

[42]  K. Hiraga,et al.  Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. , 2008, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[43]  S. Ghisla,et al.  Two Similar Gene Clusters Coding for Enzymes of a New Type of Aerobic 2-Aminobenzoate (Anthranilate) Metabolism in the BacteriumAzoarcus evansii , 2001, Journal of bacteriology.

[44]  E. Newman,et al.  Threonine as a carbon source for Escherichia coli , 1981, Journal of bacteriology.

[45]  F. Lynen,et al.  The role of biotin-dependent carboxylations in biosynthetic reactions. , 1967, The Biochemical journal.

[46]  Rodrigo Lopez,et al.  A new bioinformatics analysis tools framework at EMBL–EBI , 2010, Nucleic Acids Res..

[47]  R. Reinhardt,et al.  Adaptation of Phaeobacter inhibens DSM 17395 to growth with complex nutrients , 2013, Proteomics.

[48]  Peter D. Karp,et al.  The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases , 2007, Nucleic Acids Res..

[49]  H. Biebl,et al.  Environmental biology of the marine Roseobacter lineage. , 2006, Annual review of microbiology.

[50]  W. Eisenreich,et al.  Bacterial phenylalanine and phenylacetate catabolic pathway revealed , 2010, Proceedings of the National Academy of Sciences.

[51]  B. Volcani,et al.  Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis , 1989 .

[52]  M. Moran,et al.  Overview of the Marine Roseobacter Lineage , 2005, Applied and Environmental Microbiology.

[53]  R. Raines,et al.  Mechanistic Studies on Reactions of Bacterial Methionine y-Lyase with Olefinic Amino Acidst , 2002 .

[54]  G. Fuchs,et al.  Study of an alternate glyoxylate cycle for acetate assimilation by Rhodobacter sphaeroides , 2006, Molecular microbiology.

[55]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[56]  T. Dittmar,et al.  Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D- and L-amino acids , 2001 .

[57]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[58]  A. Steinbüchel,et al.  Isolation of prokaryotic RNA and detection of specific mRNA with biotinylated probes , 1990 .

[59]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[60]  T. Thomas,et al.  Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life , 2012, The ISME Journal.

[61]  S. Nagata,et al.  3-Hydroxyisobutyrate dehydrogenase from Pseudomonas putida E23: purification and characterization. , 1996, Bioscience, biotechnology, and biochemistry.

[62]  D. Linder,et al.  Purification of glutaryl-CoA dehydrogenase from Pseudomonas sp., an enzyme involved in the anaerobic degradation of benzoate , 2004, Archives of Microbiology.

[63]  Uwe Sauer,et al.  Multiple and Interconnected Pathways for l-Lysine Catabolism in Pseudomonas putida KT2440 , 2005, Journal of bacteriology.

[64]  I-Min A. Chen,et al.  IMG ER: a system for microbial genome annotation expert review and curation , 2009, Bioinform..

[65]  M. Adams,et al.  Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima , 1996, Journal of bacteriology.

[66]  Daniel H. Huson,et al.  Whole-genome prokaryotic phylogeny , 2005, Bioinform..

[67]  Mary Ann Moran,et al.  Genome characteristics of a generalist marine bacterial lineage , 2010, The ISME Journal.

[68]  R. Reinhardt,et al.  Dynamics of amino acid utilization in Phaeobacter inhibens DSM 17395 , 2013, Proteomics.

[69]  F. Azam,et al.  Release of aminoacids and inorganic nutrients by heterotrophic marine microflagellates , 1985 .

[70]  Barbara R. Holland,et al.  Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences , 2006, BMC Bioinformatics.

[71]  Antje Chang,et al.  BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA , 2012, Nucleic Acids Res..

[72]  P. Engel,et al.  Development of a satisfactory and general continuous assay for aminotransferases by coupling with (R)-2-hydroxyglutarate dehydrogenase. , 2012, Analytical biochemistry.

[73]  M. Simon,et al.  Diversity, ecology, and genomics of the Roseobacter clade: a short overview , 2008, Archives of Microbiology.

[74]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[75]  Sean R. Eddy,et al.  Hidden Markov model speed heuristic and iterative HMM search procedure , 2010, BMC Bioinformatics.

[76]  R. Rabus,et al.  Evaluation of Two-Dimensional Difference Gel Electrophoresis for Protein Profiling , 2003, Journal of Molecular Microbiology and Biotechnology.

[77]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[78]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[79]  Alexandros Stamatakis,et al.  How Many Bootstrap Replicates Are Necessary? , 2009, RECOMB.

[80]  K. Shimizu,et al.  Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement , 2003, Applied Microbiology and Biotechnology.

[81]  M. Höfle,et al.  Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. , 1992, International journal of systematic bacteriology.

[82]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.