Preliminary Version On the compact-regular coreflection of a stably compact locale Mart́ın

A nucleus on a frame is a finite-meet preserving closure operator. The nuclei on a frame form themselves a frame, with the Scott continuous nuclei as a subframe. We refer to this subframe as the patch frame. We show that the patch construction exhibits the category of compact regular locales and continuous maps as a coreflective subcategory of the category of stably compact locales and perfect maps, and the category of Stone locales and continuous maps as a coreflective subcategory of the category of spectral locales and spectral maps. We relate our patch construction to Banaschewski and Brümmer’s construction of the dual equivalence of the category of stably compact locales and perfect maps with the category of compact regular biframes and biframe homomorphisms.

[1]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[2]  J.J.C. Vermeulen,et al.  Proper maps of locales , 1994 .

[3]  Panagis Karazeris Compact topologies on locally presentable categories , 1997 .

[4]  Hilary A. Priestley,et al.  Ordered Topological Spaces and the Representation of Distributive Lattices , 1972 .

[5]  Jimmie D. Lawson,et al.  The spectral theory of distributive continuous lattices , 1978 .

[6]  Martín Hötzel Escardó,et al.  The regular-locally compact coreflection of a stably locally compact locale , 2001 .

[7]  D. Macnab Modal operators on Heyting algebras , 1981 .

[8]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[9]  Jimmie D. Lawson The Versatile Continuous Order , 1987, MFPS.

[10]  Christopher F. Townsend,et al.  Preframe Techniques in Constructive Locale Theory , 1996 .

[11]  Harold Simmons,et al.  A Framework for Topology , 1978 .

[12]  Steven Vickers,et al.  Constructive points of powerlocales , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Michael W. Mislove,et al.  Local compactness and continuous lattices , 1981 .

[14]  Samson Abramsky,et al.  Handbook of logic in computer science. , 1992 .

[15]  Bernhard Banaschewski,et al.  Another look at the localic Tychonoff theorem , 1988 .

[16]  Bernhard Banaschewski,et al.  Stably continuous frames , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  M. B. Smyth,et al.  Stable compactification I , 1992 .

[18]  Marcelo P Fiore,et al.  Topology via Logic , 1999 .

[19]  M. Smyth Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.

[20]  Martín Hötzel Escardó,et al.  Properly injective spaces and function spaces , 1998 .

[21]  John R. Isbell,et al.  Atomless Parts of Spaces. , 1972 .

[22]  Hilary A. Priestley,et al.  Representation of Distributive Lattices by means of ordered Stone Spaces , 1970 .