CLIP and cohibin separate rDNA from nucleolar proteins destined for degradation by nucleophagy

Nutrient starvation or inactivation of target of rapamycin complex 1 (TORC1) in budding yeast induces nucleophagy, a selective autophagy process that preferentially degrades nucleolar components. DNA, including ribosomal DNA (rDNA), is not degraded by nucleophagy, even though rDNA is embedded in the nucleolus. Here, we show that TORC1 inactivation promotes relocalization of nucleolar proteins and rDNA to different sites. Nucleolar proteins move to sites proximal to the nuclear–vacuolar junction (NVJ), where micronucleophagy (or piecemeal microautophagy of the nucleus) occurs, whereas rDNA dissociates from nucleolar proteins and moves to sites distal to NVJs. CLIP and cohibin, which tether rDNA to the inner nuclear membrane, were required for repositioning of nucleolar proteins and rDNA, as well as effective nucleophagic degradation of the nucleolar proteins. Furthermore, micronucleophagy itself was necessary for the repositioning of rDNA and nucleolar proteins. However, rDNA escaped from nucleophagic degradation in CLIP- or cohibin-deficient cells. This study reveals that rDNA–nucleolar protein separation is important for the nucleophagic degradation of nucleolar proteins.

[1]  Y. Maéda,et al.  Evidence for ESCRT- and clathrin-dependent microautophagy , 2017, The Journal of cell biology.

[2]  C. Lusk,et al.  Chm7 and Heh1 collaborate to link nuclear pore complex quality control with nuclear envelope sealing , 2016, The EMBO journal.

[3]  S. Subramani,et al.  Mechanistic insights into selective autophagy pathways: lessons from yeast , 2016, Nature Reviews Molecular Cell Biology.

[4]  S. Berger,et al.  Autophagy mediates degradation of nuclear lamina , 2015, Nature.

[5]  H. Hirano,et al.  Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus , 2015, Nature.

[6]  J. Lippincott-Schwartz,et al.  Deacetylation of nuclear LC3 drives autophagy initiation under starvation. , 2015, Molecular cell.

[7]  P. Walter,et al.  ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery , 2014, Journal of Cell Science.

[8]  H. Simon,et al.  ATG5 can regulate p53 expression and activation , 2014, Cell Death and Disease.

[9]  S. Kohlwein,et al.  Lipid droplet autophagy in the yeast Saccharomyces cerevisiae , 2014, Molecular biology of the cell.

[10]  D. Klionsky,et al.  Autophagic Processes in Yeast: Mechanism, Machinery and Regulation , 2013, Genetics.

[11]  In Hye Lee,et al.  Atg7 Modulates p53 Activity to Regulate Cell Cycle and Survival During Metabolic Stress , 2012, Science.

[12]  G. Kroemer,et al.  Autophagic removal of micronuclei , 2012, Cell cycle.

[13]  M. Hall,et al.  Target of Rapamycin (TOR) in Nutrient Signaling and Growth Control , 2011, Genetics.

[14]  S. Finkbeiner,et al.  A comprehensive glossary of autophagy-related molecules and processes (2nd edition) , 2011, Autophagy.

[15]  Ana Maria Cuervo,et al.  Autophagy in the cellular energetic balance. , 2011, Cell metabolism.

[16]  T. Miyazaki,et al.  Visualization of the dynamic behavior of ribosomal RNA gene repeats in living yeast cells , 2011, Genes to cells : devoted to molecular & cellular mechanisms.

[17]  Y. Ohsumi,et al.  Starvation Induced Cell Death in Autophagy-Defective Yeast Mutants Is Caused by Mitochondria Dysfunction , 2011, PloS one.

[18]  T. Kikuma,et al.  Macroautophagy-Mediated Degradation of Whole Nuclei in the Filamentous Fungus Aspergillus oryzae , 2010, PloS one.

[19]  A. Mayer,et al.  Microautophagy of the Nucleus Coincides with a Vacuolar Diffusion Barrier at Nuclear–Vacuolar Junctions , 2010, Molecular biology of the cell.

[20]  F. Inagaki,et al.  Atg8‐family interacting motif crucial for selective autophagy , 2010, FEBS letters.

[21]  A. Kenworthy,et al.  Nucleocytoplasmic Distribution and Dynamics of the Autophagosome Marker EGFP-LC3 , 2010, PloS one.

[22]  N. Oshiro,et al.  Tor Directly Controls the Atg1 Kinase Complex To Regulate Autophagy , 2009, Molecular and Cellular Biology.

[23]  M. Peter,et al.  Selective types of autophagy in yeast. , 2009, Biochimica et biophysica acta.

[24]  Yoshiaki Kamada,et al.  Dynamics and diversity in autophagy mechanisms: lessons from yeast , 2009, Nature Reviews Molecular Cell Biology.

[25]  D. Goldfarb,et al.  Measuring piecemeal microautophagy of the nucleus in Saccharomyces cerevisiae , 2009, Autophagy.

[26]  S. Gygi,et al.  Role for perinuclear chromosome tethering in maintenance of genome stability , 2008, Nature.

[27]  D. Goldfarb,et al.  Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. , 2008, Molecular biology of the cell.

[28]  N. Mizushima,et al.  Autophagy: process and function. , 2007, Genes & development.

[29]  Daniel J. Klionsky,et al.  Autophagy: from phenomenology to molecular understanding in less than a decade , 2007, Nature Reviews Molecular Cell Biology.

[30]  K. Johzuka,et al.  RNA polymerase I transcription obstructs condensin association with 35S rRNA coding regions and can cause contraction of long repeat in Saccharomyces cerevisiae , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[31]  D. Goldfarb,et al.  Nucleus-Vacuole Junctions and Piecemeal Microautophagy of the Nucleus in S. cerevisiae , 2007, Autophagy.

[32]  Jennifer Apodaca,et al.  Proteasome inhibition in wild-type yeast Saccharomyces cerevisiae cells. , 2007, BioTechniques.

[33]  Y. Ohsumi,et al.  Hierarchy of Atg proteins in pre‐autophagosomal structure organization , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[34]  K. Gable,et al.  Targeting of Tsc13p to nucleus-vacuole junctions: a role for very-long-chain fatty acids in the biogenesis of microautophagic vesicles. , 2005, Molecular biology of the cell.

[35]  E. Cameroni,et al.  The TOR and EGO protein complexes orchestrate microautophagy in yeast. , 2005, Molecular cell.

[36]  D. Goldfarb,et al.  Nvj1p is the outer-nuclear-membrane receptor for oxysterol-binding protein homolog Osh1p in Saccharomyces cerevisiae , 2004, Journal of Cell Science.

[37]  D. Klionsky,et al.  Cargo Proteins Facilitate the Formation of Transport Vesicles in the Cytoplasm to Vacuole Targeting Pathway* , 2004, Journal of Biological Chemistry.

[38]  M. Nomura,et al.  SIR2 Regulates Recombination between Different rDNA Repeats, but Not Recombination within Individual rRNA Genes in Yeast , 2004, Cell.

[39]  H. Schwarz,et al.  Determination of Four Sequential Stages during Microautophagy in Vitro* , 2004, Journal of Biological Chemistry.

[40]  D. Goldfarb,et al.  Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. , 2003, Molecular biology of the cell.

[41]  Heinz Schwarz,et al.  Autophagic tubes: vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding. , 2000 .

[42]  A. Mayer,et al.  Cell-Free Reconstitution of Microautophagic Vacuole Invagination and Vesicle Formation , 2000, The Journal of cell biology.

[43]  H. Schwarz,et al.  Autophagic Tubes , 2000, The Journal of cell biology.

[44]  Kazuya Nagano,et al.  Tor-Mediated Induction of Autophagy via an Apg1 Protein Kinase Complex , 2000, The Journal of cell biology.

[45]  D. Goldfarb,et al.  Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. , 2000, Molecular biology of the cell.

[46]  V. Kushnirov Rapid and reliable protein extraction from yeast , 2000, Yeast.

[47]  Y. Ohsumi,et al.  Isolation and characterization of autophagy‐defective mutants of Saccharomyces cerevisiae , 1993, FEBS letters.

[48]  S. Tsuboi,et al.  Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction , 1992, The Journal of cell biology.