Algorithms for defects in nanostructures

Abstract We illustrate recent progress in developing algorithms for solving the Kohn–Sham problem. Key ingredients of our algorithm include pseudopotentials implemented on a real space grid and the use of damped-Chebyshev polynomial filtered subspace iteration. This procedure allows one to predict electronic properties for many materials across the nano-regime, i.e., from atoms to nanocrystals of sufficient size to replicate bulk properties. We will illustrate this method for large silicon quantum dots doped with phosphorus defect.

[1]  M. Fujii,et al.  Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals. , 2002, Physical review letters.

[2]  T. Beck Real-space mesh techniques in density-functional theory , 2000, cond-mat/0006239.

[3]  J. Chelikowsky REVIEW ARTICLE: The pseudopotential-density functional method applied to nanostructures , 2000 .

[4]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[5]  Constantine Bekas,et al.  Computing charge densities with partially reorthogonalized Lanczos , 2005, Comput. Phys. Commun..

[6]  Yousef Saad,et al.  Parallel methods and tools for predicting material properties , 2000, Comput. Sci. Eng..

[7]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[8]  Yousef Saad,et al.  Ab initio calculations for large dielectric matrices of confined systems. , 2003, Physical review letters.

[9]  Steven G. Louie,et al.  Quantum confinement and optical gaps in Si nanocrystals , 1997 .

[10]  Serdar Ogut,et al.  First-principles density-functional calculations for optical spectra of clusters and nanocrystals , 2002 .

[11]  C. A. Sackett,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions [Phys. Rev. Lett. 75, 1687 (1995)] , 1997 .

[12]  T. Torsti,et al.  Three real‐space discretization techniques in electronic structure calculations , 2006 .

[13]  Van de Walle CG,et al.  First-principles calculations of hyperfine parameters. , 1993, Physical review. B, Condensed matter.

[14]  B. Fornberg,et al.  A review of pseudospectral methods for solving partial differential equations , 1994, Acta Numerica.

[15]  J. Chelikowsky,et al.  Optical properties of CdSe quantum dots , 2003 .

[16]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[17]  K Wu,et al.  Thick-Restart Lanczos Method for Electronic Structure Calculations , 1999 .

[18]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[19]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[20]  Y. Saad,et al.  Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Y. Saad,et al.  PARSEC – the pseudopotential algorithm for real‐space electronic structure calculations: recent advances and novel applications to nano‐structures , 2006 .

[22]  J. A. Elliott Europort's parallelized codes yield results , 1995 .