An adaptive numerical cubature algorithm for simplices

A globally adaptive algorithm for numerical cubature of a vector of functions over a collection of n-dimensional simplices is described. The algorithm is based on a subdivision strategy that chooses for subdivision at each stage the subregion (of the input simplices) with the largest estimated error. This subregion is divided into two, three or four equal volume subregions by cutting selected edges. These edges are selected using information about the smoothness of the integrands in the edge directions. The algorithm allows a choice from several embedded cubature rule sequences for approximate integration and error estimation. A Fortran 95 implementation as a part of CUBPACK is also discussed. Testing of the algorithm is described.

[1]  Mark B. Wells,et al.  An Experimental Algorithm for N-Dimensional Adaptive Quadrature , 1979, TOMS.

[2]  Alan Genz,et al.  A Package for Testing Multiple Integration Subroutines , 1987 .

[3]  David K. Kahaner,et al.  TWODQD an adaptive routine for two-dimensional integration , 1987 .

[4]  Ronald Cools,et al.  Algorithm 824: CUBPACK: a package for automatic cubature; framework description , 2003, TOMS.

[5]  Terje O. Espelid,et al.  An adaptive algorithm for the approximate calculation of multiple integrals , 1991, TOMS.

[6]  Ian Robinson An Algorithm for Automatic Integration Over a Triangle Using Nonlinear Extrapolation , 1984, TOMS.

[7]  Alan Genz,et al.  An Adaptive Numerical Integration Algorithm for Simplices , 1989, Great Lakes Computer Science Conference.

[8]  R. Cools,et al.  Monomial cubature rules since “Stroud”: a compilation , 1993 .

[9]  P. Silvester,et al.  Symmetric Quadrature Formulae for Simplexes , 1970 .

[10]  A. H. Stroud,et al.  A Fifth Degree Integration Formula for the n-Simplex , 1969 .

[11]  Hermann Engles,et al.  Numerical quadrature and cubature , 1980 .

[12]  Ann Haegemans,et al.  Algorithm 34 An algorithm for the automatic integration over a triangle , 2005, Computing.

[13]  Ronald Cools,et al.  Cubpack: Progress Report , 1992 .

[14]  H. M. Möller,et al.  Invariant Integration Formulas for the n-Simplex by Combinatorial Methods , 1978 .

[15]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[16]  Terje O. Espelid,et al.  Error estimation in automatic quadrature routines , 1991, TOMS.

[17]  H. Engels,et al.  Numerical Quadrature and Cubature , 1980 .

[18]  Patrick Keast Cubature formulas for the surface of the sphere , 1987 .

[19]  Terje O. Espelid,et al.  Algorithm 706: DCUTRI: an algorithm for adaptive cubature over a collection of triangles , 1992, TOMS.

[20]  J. N. Lyness,et al.  On Simplex Trapezoidal Rule Families , 1980 .

[21]  Arnold J. Stromberg,et al.  Number-theoretic Methods in Statistics , 1996 .

[22]  Ronald Cools,et al.  A survey of numerical cubature over triangles , 1993 .

[23]  Ronald Cools,et al.  Algorithm 720: An algorithm for adaptive cubature over a collection of 3-dimensional simplices , 1993, TOMS.

[24]  D. P. Laurie,et al.  Algorithm 584: CUBTRI: Automatic Cubature over a Triangle , 1982, TOMS.

[25]  R. Cools Monomial cubature rules since “Stroud”: a compilation—part 2 , 1999 .