Exploration of Misogyny in Spanish and English Tweets

Nowadays, misogynistic abuse online has become a serious issue due, especially, to anonymity and interactivity of the web that facilitate the increase and the permanence of the offensive comments on the web. In this paper, we present an approach based on stylistic and specific topic information for the detection of misogyny, exploring the several aspects of misogynistic Spanish and English user generated texts on Twitter. Our method has been evaluated in the framework of our participation in the AMI shared task at IberEval 2018 obtaining promising results.

[1]  Paolo Rosso,et al.  Overview of the Task on Automatic Misogyny Identification at IberEval 2018 , 2018, IberEval@SEPLN.

[2]  Walter Daelemans,et al.  Detection and Fine-Grained Classification of Cyberbullying Events , 2015, RANLP.

[3]  M. Thelwall,et al.  Sentiment Strength Detection in Short Informal Text 1 , 2010 .

[4]  Paolo Rosso,et al.  Automatic Identification and Classification of Misogynistic Language on Twitter , 2018, NLDB.

[5]  M. Inés Torres,et al.  Extracting relevant knowledge for the detection of sarcasm and nastiness in the social web , 2014, Knowl. Based Syst..

[6]  Azy Barak,et al.  Effects of anonymity, invisibility, and lack of eye-contact on toxic online disinhibition , 2012, Comput. Hum. Behav..

[7]  M. Williams,et al.  Hate speech, machine classification and statistical modelling of information flows on Twitter: interpretation and communication for policy decision making , 2014 .

[8]  Jun-Ming Xu,et al.  Learning from Bullying Traces in Social Media , 2012, NAACL.

[9]  Jesse Fox,et al.  Sexism in online video games: The role of conformity to masculine norms and social dominance orientation , 2014, Comput. Hum. Behav..

[10]  Joel R. Tetreault,et al.  Abusive Language Detection in Online User Content , 2016, WWW.

[11]  Thamar Solorio,et al.  Detecting Nastiness in Social Media , 2017, ALW@ACL.

[12]  Ying Chen,et al.  Detecting Offensive Language in Social Media to Protect Adolescent Online Safety , 2012, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[13]  Thomas E. Ford,et al.  Sexist Humor in the Workplace: A Case of Subtle Harassment , 2011 .

[14]  Iñaki San Vicente,et al.  Elhuyar at TASS 2013 , 2013 .

[15]  Ismael Díaz Rangel,et al.  Creación y evaluación de un diccionario marcado con emociones y ponderado para el español , 2014 .

[16]  Joel R. Tetreault,et al.  Do Characters Abuse More Than Words? , 2016, SIGDIAL Conference.

[17]  T. E. Ford,et al.  Effects of exposure to sexist humor on perceptions of normative tolerance of sexism. , 2001 .

[18]  A. Flammini,et al.  Misogynistic Language on Twitter and Sexual Violence , 2015 .

[19]  Xavier Carreras,et al.  FreeLing: An Open-Source Suite of Language Analyzers , 2004, LREC.

[20]  Njagi Dennis Gitari,et al.  A Lexicon-based Approach for Hate Speech Detection , 2015, MUE 2015.

[21]  Carlos Cruz,et al.  Perpetuating online sexism offline: Anonymity, interactivity, and the effects of sexist hashtags on social media , 2015, Comput. Hum. Behav..

[22]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[23]  Thanassis Tiropanis,et al.  The problem of identifying misogynist language on Twitter (and other online social spaces) , 2016, WebSci.

[24]  Cornelia Caragea,et al.  Content-Driven Detection of Cyberbullying on the Instagram Social Network , 2016, IJCAI.

[25]  Hugo Jair Escalante,et al.  Early detection of deception and aggressiveness using profile-based representations , 2017, Expert Syst. Appl..

[26]  Adrienne Shaw,et al.  The Internet Is Full of Jerks, Because the World Is Full of Jerks: What Feminist Theory Teaches Us About the Internet , 2014 .

[27]  Henry Lieberman,et al.  Common Sense Reasoning for Detection, Prevention, and Mitigation of Cyberbullying , 2012, TIIS.

[28]  Jack Grieve,et al.  Dimensions of Abusive Language on Twitter , 2017, ALW@ACL.