Conformational dependence of atomic multipole moments

Abstract The influence of conformational changes on the molecular charge distribution is investigated for three model compounds, We show that local torsional effects, such as rotations about bonds directly connected to the atom of interest, have an important influence on the atomic charge distribution. The description of the electrostatic potential of flexible molecules can be significantly improved if the torsional dependence of the multiple moments is described by a short Fourier series.

[1]  Donald E. Williams,et al.  Representation of the molecular electrostatic potential by a net atomic charge model , 1981 .

[2]  G. N. Ramachandran,et al.  Stereochemical criteria for polypeptide and protein chain conformations. II. Allowed conformations for a pair of peptide units. , 1965, Biophysical journal.

[3]  Julia M. Goodfellow,et al.  What base pairings can occur in DNA? A distributed multipole study of the electrostatic interactions between normal and alkylated nucleic acid bases , 1993 .

[4]  Donald E. Williams,et al.  Conformational dependence of electrostatic potential‐derived charges: Studies of the fitting procedure , 1993, J. Comput. Chem..

[5]  György G. Ferenczy Charges derived from distributed multipole series , 1991 .

[6]  Sarah L. Price,et al.  The electrostatic interactions in van der Waals complexes involving aromatic molecules , 1987 .

[7]  Terry R. Stouch,et al.  Conformational dependence of electrostatic potential derived charges of a lipid headgroup: Glycerylphosphorylcholine , 1992 .

[8]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[9]  György G. Ferenczy,et al.  Transferable net atomic charges from a distributed multipole analysis for the description of electrostatic properties: a case study of saturated hydrocarbons , 1993 .

[10]  R. E. Rosenberg,et al.  Butadiene. 2. Examination of the energetic preference for coplanarity of double bonds. Comparison of butadiene, acrolein, and vinylamine , 1991 .

[11]  Christophe Chipot,et al.  A comprehensive approach to molecular charge density models: From distributed multipoles to fitted atomic charges , 1994 .

[12]  E. M. Evleth,et al.  Conformationally invariant modeling of atomic charges , 1993 .

[13]  J. Thornton,et al.  Amino/aromatic interactions in proteins: is the evidence stacked against hydrogen bonding? , 1994, Journal of molecular biology.

[14]  William L. Jorgensen,et al.  Cis-trans energy difference for the peptide bond in the gas phase and in aqueous solution , 1988 .

[15]  Jonathan W. Essex,et al.  Atomic charges for variable molecular conformations , 1992 .

[16]  Sarah L. Price,et al.  Electrostatic models for polypeptides: can we assume transferability? , 1992 .

[17]  H. Scheraga,et al.  Modeling amino acid side chains. 3. Influence of intra- and intermolecular environment on point charges , 1993 .

[18]  Sarah L. Price,et al.  Toward accurate transferable electrostatic models for polypeptides: A distributed multipole study of blocked amino acid residue charge distributions , 1991 .

[19]  Martin Karplus,et al.  Ab initio studies of hydrogen bonding of N-methylacetamide: structure, cooperativity, and internal rotational barriers , 1992 .

[20]  Charles L. Brooks,et al.  Theoretical study of blocked glycine and alanine peptide analogs , 1991 .

[21]  A. Stone,et al.  Practical schemes for distributed polarizabilities , 1993 .

[22]  George R. Famini,et al.  Conformational dependence of the electrostatic potential‐derived charges of dopamine: Ramifications in molecular mechanics force field calculations in the gas phase and in aqueous solution , 1993, J. Comput. Chem..

[23]  A. Stone,et al.  Localization methods for distributed polarizabilities , 1994 .

[24]  Jonathan W. Essex,et al.  Errors in free-energy perturbation calculations due to neglecting the conformational variation of atomic charges , 1992 .

[25]  John B. O. Mitchell,et al.  Gaussian multipoles in practice: Electrostatic energies for intermolecular potentials , 1994, J. Comput. Chem..

[26]  Patrick W. Fowler,et al.  A model for the geometries of Van der Waals complexes , 1985 .