Acoustic source identification using multiple frequency information

We consider the inverse problem of identifying the location and shape of a finitely supported acoustic source function, separable with respect to space and frequency, from measurements of the acoustic field on a closed surface for many frequencies. A simple uniqueness proof and an error estimate for the unknown source function are presented. From the uniqueness proof an efficient numerical algorithm for the solution is developed. The algorithm is tested using numerically generated data in dimensions 2 and 3.

[1]  R. P. Porter,et al.  Generalized holography and computational solutions to inverse source problems , 1982 .

[2]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[3]  H. Moses,et al.  Solution of Maxwell's Equations in Terms of a Spinor Notation: the Direct and Inverse Problem , 1959 .

[4]  Anthony J. Devaney,et al.  Inverse Source Problem in Nonhomogeneous Background Media , 2007, SIAM J. Appl. Math..

[5]  Jack K. Cohen,et al.  Nonuniqueness in the inverse source problem in acoustics and electromagnetics , 1975 .

[6]  Robert P. Porter Diffraction-Limited Scalar Image Formation with Holograms of Arbitrary Shape , 1970 .

[7]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[8]  R. P. Porter,et al.  Holography and the inverse source problem , 1982 .

[9]  R. P. Porter,et al.  Image formation with arbitrary holographic type surfaces , 1969 .

[10]  N. Bojarski,et al.  A survey of the near-field far-field inverse scattering inverse source integral equation , 1982 .

[11]  Nicolas Valdivia,et al.  The detection of surface vibrations from interior acoustical pressure , 2003 .

[12]  I. Lahaie,et al.  Inverse source problem for three-dimensional partially coherent sources and fields , 1985 .

[13]  Masaru Ikehata,et al.  Reconstruction of a source domain from the Cauchy data: II. Three-dimensional case , 1999, Inverse Problems.

[14]  S. Arridge Optical tomography in medical imaging , 1999 .

[15]  Victor Isakov,et al.  Inverse Source Problems , 1990 .

[16]  S. Arridge,et al.  Nonuniqueness in diffusion-based optical tomography. , 1998, Optics letters.

[17]  E. Williams,et al.  Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography , 1999 .

[18]  Edwin A. Marengo,et al.  Inverse Source Problem in Nonhomogeneous Background Media. Part II: Vector Formulation and Antenna Substrate Performance Characterization , 2008, SIAM J. Appl. Math..

[19]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[20]  Michael E. Taylor,et al.  Partial Differential Equations , 1996 .

[21]  Richard W. Ziolkowski,et al.  Nonradiating and minimum energy sources and their fields: generalized source inversion theory and applications , 2000 .

[22]  H. Moses The time‐dependent inverse source problem for the acoustic and electromagnetic equations in the one‐ and three‐dimensional cases , 1984 .

[23]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .