Efficient Strategy for Adaptive Partition of N-Dimensional Intervals in the Framework of Diagonal Algorithms

In this paper, the problem of the minimal description of the structure offunctional f(x) over an N-dimensional interval is considered. Thedescription is obtained by applying diagonal algorithms, i.e., proceduressequentially partitioning the given hyperinterval and evaluating f(x)at the vertices corresponding to the main diagonal of each generatedsubinterval. Two partition strategies traditionally used for solving thisproblem are analyzed and it is demonstrated that using them can result ina high number of redundant evaluations of the functional f(x). Anew efficient partition strategy is proposed; it reduces considerably thenumber of evaluations of f(x) and the memory complexity.

[1]  Arthur R. Butz,et al.  Space Filling Curves and Mathematical Programming , 1968, Inf. Control..

[2]  E. Hansen Global optimization using interval analysis — the multi-dimensional case , 1980 .

[3]  Francesco Archetti,et al.  A survey on the global optimization problem: General theory and computational approaches , 1984, Ann. Oper. Res..

[4]  Efim A. Galperin,et al.  The cubic algorithm , 1985 .

[5]  Regina Hunter Mladineo An algorithm for finding the global maximum of a multimodal, multivariate function , 1986, Math. Program..

[6]  Jon G. Rokne,et al.  New computer methods for global optimization , 1988 .

[7]  David Q. Mayne,et al.  Efficient domain partitioning algorithms for global optimization of rational and Lipschitz continuous functions , 1989 .

[8]  Pankaj K. Agarwal Geometric Partitioning and its Applications , 1990, Discrete and Computational Geometry.

[9]  G. R. Wood,et al.  Multidimensional bisection applied to global optimisation , 1991 .

[10]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[11]  Graham R. Wood,et al.  The bisection method in higher dimensions , 1992, Math. Program..

[12]  János D. Pintér,et al.  Convergence qualification of adaptive partition algorithms in global optimization , 1992, Math. Program..

[13]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[14]  Ulrich W. Kulisch,et al.  Numerical Toolbox for Verified Computing I , 1993 .

[15]  W. P. Baritompa,et al.  PMB-parallel multidimensional bisection , 1993 .

[16]  Leo Breiman,et al.  A deterministic algorithm for global optimization , 1993, Math. Program..

[17]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[18]  Tibor Csendes,et al.  The impact of accelerating tools on the interval subdivision algorithm for global optimization , 1993 .

[19]  William Baritompa,et al.  Accelerations for a variety of global optimization methods , 1994, J. Glob. Optim..

[20]  H. Sagan Space-filling curves , 1994 .

[21]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[22]  Victor Korotkich Multicriteria Analysis in Problem Solving and Structural Complexity , 1995 .

[23]  Tibor Csendes,et al.  On the selection of subdivision directions in interval branch-and-bound methods for global optimization , 1995, J. Glob. Optim..

[24]  Yaroslav D. Sergeyev,et al.  An Information Global Optimization Algorithm with Local Tuning , 1995, SIAM J. Optim..

[25]  János D. Pintér,et al.  Global optimization in action , 1995 .

[26]  T. Csendes,et al.  A review of subdivision direction selection in interval methods for global optimization , 1997 .

[27]  Reiner Horst,et al.  On generalized bisection of n-simplices , 1997, Math. Comput..

[28]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[29]  Victor P. Gergel A Global Optimization Algorithm for Multivariate Functions with Lipschitzian First Derivatives , 1997, J. Glob. Optim..

[30]  Tibor Csendes,et al.  Multisection in Interval Branch-and-Bound Methods for Global Optimization – I. Theoretical Results , 2000, J. Glob. Optim..

[31]  Tibor Csendes,et al.  A New Multisection Technique in Interval Methods for Global Optimization , 2000, Computing.

[32]  Clara Pizzuti,et al.  Acceleration Tools for Diagonal Information Global Optimization Algorithms , 2001, Comput. Optim. Appl..