L-band active / passive time series measurements over a growing season using the ComRAD ground-based SMAP simulator

Once launched in late 2014, NASA's Soil Moisture Active Passive (SMAP) mission will use a combination of a four-channel L-band radiometer and a three-channel L-band radar to provide high resolution global mapping of soil moisture and landscape freeze/thaw state every 2-3 days. These measurements are valuable to improved understanding of the Earth's water, energy, and carbon cycles, and to many applications of societal benefit. In order for soil moisture to be retrieved accurately from SMAP microwave data, prelaunch activities are concentrating on developing improved geophysical retrieval algorithms for each of the SMAP baseline products. The ComRAD truck-based SMAP simulator collected active/passive microwave time series data at the SMAP incident angle of 40° over corn and soybeans during 2012 for use in refining SMAP retrieval algorithms.

[1]  Sheng Gao,et al.  Field calibration and validation of Radarsat-2 , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[2]  Bo Zhang,et al.  A new compact three-component decomposition scheme , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[3]  Stefan B. Williams,et al.  Automatic spectrometer/RGB camera spatial calibration , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[4]  Richard S. Katz,et al.  United States: United States , 2010 .

[5]  Saibun Tjuatja,et al.  A microwave backscattering model for rain column , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[6]  Avik Bhattacharya,et al.  Snow wetness estimation based on Pol-SAR decomposition technique , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[7]  Enrico Cadau,et al.  SIMDEO: An integrated system for landfill detection and monitoring using EO data , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[8]  W. Wasylkiwskyj,et al.  Performance of an L-Band antenna for radiometric measurements , 2013, 2013 US National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM).

[9]  Motoyuki Sato,et al.  Uniform polarimetric matrix rotation theory , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[10]  Arnaud Hélière,et al.  ESA lidar space missions and supporting activities , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[11]  Qinhuo Liu,et al.  Analysis on inversion saturation of leaf area index based on muti-layer models , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[12]  P. O’neill,et al.  Multi-Sensor Microwave Soil Moisture Remote Sensing: NASA's Combined Radar/Radiometer (ComRAD) System , 2006, 2006 IEEE MicroRad.

[13]  Fan Yang,et al.  Freeman's decomposition model based new spill detector , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[14]  Richard M. Lucas,et al.  Hedgerow segmentation on VHR optical satellite images for habitat monitoring , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[15]  Thomas J. Jackson,et al.  Estimating wheat growth for radar vegetation indices , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[16]  Nataliia Kussul,et al.  Assessment of relative efficiency of using MODIS data to winter wheat yield forecasting in Ukraine , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[17]  I. Becker-Reshef,et al.  Wheat production forecasting for Pakistan from satellite data , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[18]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.