Robust Updating of Uncertain Computational Models Using Experimental Modal Analysis

In this paper, a methodology is presented to perform the robust updating of complex uncertain dynamic systems with respect to modal experimental data in the context of structural dynamics. Because both model uncertainties and parameter uncertainties must be considered in the computational model, the uncertain computational model is constructed by using the nonparametric probabilistic approach. We present an extension to the probabilistic case of the input-error methodology for modal analysis adapted to the deterministic updating problem. It is shown that such an extension to the robust-updating context induces some conceptual difficulties and is not straightforward. The robust-updating formulation leads us to solve a mono-objective optimization problem in the presence of inequality probabilistic constraints. A numerical application is presented to show the efficiency of the proposed method.

[1]  Marc P. Mignolet,et al.  Local/Global Effects of Mistuning on the Forced Response of Bladed Disks , 2004 .

[2]  Christophe Desceliers,et al.  Mixed nonparametric–parametric probabilistic model for earthquake reliability of an inelastic reinforced concrete frame structure , 2010 .

[3]  Christian Soize Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions , 2010 .

[4]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[5]  Christian Soize,et al.  Design optimization with an uncertain vibroacoustic model , 2008 .

[6]  Christian Soize,et al.  Structural Acoustics and Vibration , 2001 .

[7]  Roger Ghanem,et al.  Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition , 2007 .

[8]  Pierre Ladevèze,et al.  Application of a posteriori error estimation for structural model updating , 1999 .

[9]  C Soize,et al.  Maximum entropy approach for modeling random uncertainties in transient elastodynamics. , 2001, The Journal of the Acoustical Society of America.

[10]  John E. Mottershead,et al.  Stochastic model updating: Part 1—theory and simulated example , 2006 .

[11]  R. Ohayon,et al.  Fluid-Structure Interaction: Applied Numerical Methods , 1995 .

[12]  Christian Soize,et al.  Dynamic Substructuring of Damped Structures Using Singular Value Decomposition , 1997 .

[13]  Christian Soize,et al.  Probabilistic model identification of uncertainties in computational models for dynamical systems and experimental validation , 2008 .

[14]  Christian Soize A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics , 2005 .

[15]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .

[16]  G. S. Szekely,et al.  Computational procedure for a fast calculation of eigenvectors and eigenvalues of structures with random properties , 2001 .

[17]  H. Berger,et al.  Parametric updating of a finite element model from experimental modal characteristics , 1990 .

[18]  Roger Ghanem,et al.  Analysis of Eigenvalues and Modal Interaction of Stochastic Systems , 2005 .

[19]  Christian Soize,et al.  Robust updating of uncertain damping models in structural dynamics for low- and medium-frequency ranges , 2008 .

[20]  Roger Ohayon Chapter V – Master Structure Frequency Response Function , 1998 .

[21]  F. Hemez,et al.  REVIEW AND ASSESSMENT OF MODEL UPDATING FOR NON-LINEAR, TRANSIENT DYNAMICS , 2001 .

[22]  J.E. Mottershead,et al.  Stochastic model updating: Part 2—application to a set of physical structures , 2006 .

[23]  Christian Soize A nonparametric model of random uncertainties for reduced matrix models in structural dynamics , 2000 .

[24]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .