The Category of the 4-Valued Fuzzy Sets

This paper considers the connection of the 4-valued fuzzy sets with topos theory. The authors constructed the category QFuz of the 4-valued fuzzy sets. The category QFuz has a middle object and all topos properties except Subobject Classifier, consequently forms a weak topos.

[1]  Andrew M. Pitts,et al.  Fuzzy sets do not form a topos , 1982 .

[2]  J. Goguen L-fuzzy sets , 1967 .

[3]  Xue-Hai Yuan,et al.  The Category RSC of I-Rough Sets , 2008, 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery.

[4]  D. Ponasse Short communication: Some remarks on the category Fuz(H) of M. Eytan , 1983 .

[5]  J. C. Carrega Short communication: The categories Set H and Fuz H , 1983 .

[6]  R. Goldblatt Topoi, the Categorial Analysis of Logic , 1979 .

[7]  L. N. Stout,et al.  Foundations of fuzzy sets , 1991 .

[8]  E. Stanley Lee,et al.  The three-dimensional fuzzy sets and their cut sets , 2009, Comput. Math. Appl..

[9]  M. Barr FUZZY SET THEORY AND TOPOS THEORY , 1986 .

[10]  M. Eytan,et al.  Fuzzy sets: A topos-logical point of view , 1981 .

[11]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[12]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[13]  Xue-Hai Yuan,et al.  Y-N Sets and the Category of Y-N Sets , 2009, 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery.

[14]  S. Lane Categories for the Working Mathematician , 1971 .