First‐principles study on structural, electronic and magnetic properties of iron nanowire encapsulated in carbon nanotube

The structural, electronic, and magnetic properties of Fe nanowire encapsulated in zigzag CNTs have been investigated systematically using the first‐principles PAW potential within DFT under GGA. Among the seven Fe‐encapsulated C cables, only the (8,0) nanocable is formed endothermically, the other larger cables are formed exothermically. Therefore, it is expected that thicker Fe nanowires would be pulled spontaneously into larger CNTs by forces amounting to a fraction of a nanonewton. The high spin polarization and magnetic moments of the Fe‐encapsulated C cables coming solely from the Fe nanowire imply the Fe‐encapsulated C cables can be appropriate to various applications such as spintronics, high‐density magnetic storage, and magnetically guided drug‐delivery systems.

[1]  B. Ha,et al.  Ferromagnetic properties of single-walled carbon nanotubes synthesized by Fe catalyst arc discharge , 2009 .

[2]  V. Gavriljuk,et al.  Structure and magnetic properties of iron nanowires encased in multiwalled carbon nanotubes , 2007 .

[3]  H. Nakanishi,et al.  First principles investigation on Fe-filled single-walled carbon nanotubes on Ni (1 1 1) and Cu (1 1 1) , 2007 .

[4]  P. Ajayan,et al.  Carbon Nanotubes as High-Pressure Cylinders and Nanoextruders , 2006, Science.

[5]  E. Mendoza,et al.  Iron filled single-wall carbon nanotubes – A novel ferromagnetic medium , 2006 .

[6]  K. Chang,et al.  The electronic and magnetic properties of carbon nanotubes interacting with iron atoms , 2006 .

[7]  J. Ferrer,et al.  Tuning the electrical conductivity of nanotube-encapsulated metallocene wires. , 2006, Physical review letters.

[8]  D. Peng,et al.  Magnetic properties of Fe clusters adhering to single-wall carbon nanotubes , 2005 .

[9]  K. Chang,et al.  Electronic and magnetic properties of single-wall carbon nanotubes filled with iron atoms , 2005 .

[10]  Vijay Kumar,et al.  Ferromagnetism and piezomagnetic behavior in Mn-doped germanium nanotubes , 2004 .

[11]  A. Zettl,et al.  Encapsulation of one-dimensional potassium halide crystals within BN nanotubes , 2004 .

[12]  Kwang S. Kim,et al.  Nanowires for spintronics: A study of transition-metal elements of groups 8–10 , 2004 .

[13]  S. Ciraci,et al.  High-conducting magnetic nanowires obtained from uniform titanium-covered carbon nanotubes , 2004 .

[14]  Vijay Kumar,et al.  Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: A first-principles study , 2004 .

[15]  Vijay Kumar,et al.  Metal encapsulated nanotubes of silicon and germanium , 2004 .

[16]  A. Fazzio,et al.  Fe and Mn atoms interacting with carbon nanotubes , 2003 .

[17]  Vijay Kumar,et al.  Magnetism in transition-metal-doped silicon nanotubes. , 2003, Physical review letters.

[18]  A. Okotrub,et al.  Fe nanowires in carbon nanotubes as an example of a one-dimensional system of exchange-coupled ferromagnetic nanoparticles , 2003 .

[19]  Y. Bando,et al.  Boron nitride nanotubes filled with Ni and NiSi2 nanowires in situ , 2003 .

[20]  Oguz Gulseren,et al.  Systematic study of adsorption of single atoms on a carbon nanotube , 2003 .

[21]  A. Fazzio,et al.  Ab initiostudy of an iron atom interacting with single-wall carbon nanotubes , 2003 .

[22]  Solange B. Fagan,et al.  Electronic and magnetic properties of iron chains on carbon nanotubes , 2003, Microelectron. J..

[23]  Jijun Zhao,et al.  Magnetism of transition-metal/carbon-nanotube hybrid structures. , 2003, Physical review letters.

[24]  Y. Bando,et al.  Filling boron nitride nanotubes with metals , 2003 .

[25]  M. Monthioux Filling single-wall carbon nanotubes , 2002 .

[26]  Malcolm L. H. Green,et al.  Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes , 2002 .

[27]  R. Ma,et al.  Coaxial nanocables: Fe nanowires encapsulated in BN nanotubes with intermediate C layers , 2001 .

[28]  Y. Bando,et al.  Nanotubes of boron nitride filled with molybdenum clusters. , 2001, Journal of nanoscience and nanotechnology.

[29]  Mauricio Terrones,et al.  Enhanced magnetic coercivities in Fe nanowires , 1999 .

[30]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[31]  N. Agraït,et al.  Formation and manipulation of a metallic wire of single gold atoms , 1998, Nature.

[32]  Alan M. Cassell,et al.  Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers , 1998, Nature.

[33]  Yukihito Kondo,et al.  Quantized conductance through individual rows of suspended gold atoms , 1998, Nature.

[34]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[35]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[36]  S. Iijima,et al.  Fibrilliform growth of carbon nanotubes , 1997 .

[37]  L. Qin CVD synthesis of carbon nanotubes , 1997 .

[38]  Malcolm L. H. Green,et al.  Filling of Carbon Nanotubes with Silver, Gold, and Gold Chloride , 1996 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[41]  Supapan Seraphin,et al.  Filling the carbon nanocages , 1996 .

[42]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[43]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[44]  C. Guerret-Piecourt,et al.  Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes , 1994, Nature.

[45]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[46]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[47]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[48]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[49]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[50]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[51]  P. C. P. Watts,et al.  Verification of electromagnetic induction from Fe-filled carbon nanotubes , 2004 .