Generalized (p,q)$(p,q)$-Bleimann-Butzer-Hahn operators and some approximation results

The aim of this paper is to introduce a new generalization of Bleimann-Butzer-Hahn operators by using (p,q)$(p,q)$-integers which is based on a continuously differentiable function μ on [0,∞)=R+$[0,\infty)=\mathbb{R}_{+}$. We establish the Korovkin type approximation results and compute the degree of approximation by using the modulus of continuity. Moreover, we investigate the shape preserving properties of these operators.

[1]  Md. Nasiruzzaman,et al.  Some approximation results on Bernstein-Schurer operators defined by (p,q)$(p,q)$-integers , 2015 .

[2]  S. A. Mohiuddine,et al.  On Kantorovich modification of (p,q)$( p,q ) $-Baskakov operators , 2016 .

[3]  Vishnu Narayan Mishra,et al.  Chlodowsky type generalization of (p, q)-Szász operators involving Brenke type polynomials , 2018 .

[4]  Faisal Khan,et al.  Approximation by (p, q)-Lorentz Polynomials on a Compact Disk , 2015, 1504.05093.

[5]  Ioan Rasa,et al.  Bernstein-type operators which preserve polynomials , 2011, Comput. Math. Appl..

[6]  P. Njionou Sadjang,et al.  On the fundamental theorem of $(p,q)$-calculus and some $(p,q)$-Taylor formulas , 2013, 1309.3934.

[7]  Octavian Agratini,et al.  On a generalization of Bleimann, Butzer and Hahn operators based on q-integers , 2011, Math. Comput. Model..

[8]  Khursheed J. Ansari,et al.  Some approximation results on Bleimann-Butzer-Hahn operators defined by (p,q)-integers , 2015, 1505.00392.

[9]  P. L. Butzer,et al.  A Bernstein-type operator approximating continuous functions on the semi-axis , 1980 .

[10]  M. Mursaleen,et al.  Some approximation results on Bernstein-Schurer operators defined by (p,q)-integers (Revised) , 2015 .

[11]  Vishnu Narayan Mishra,et al.  Approximation properties of Chlodowsky variant of (p,q)$(p,q)$ Bernstein-Stancu-Schurer operators , 2017, Journal of inequalities and applications.

[12]  Mohammad Mursaleen,et al.  On (p, q)-analogue of Bernstein operators , 2015, Appl. Math. Comput..

[13]  Dilek Söylemez On -Bleimann, Butzer, and Hahn-Type Operators , 2015 .

[14]  Khursheed J. Ansari,et al.  On a Kantorovich Variant of (p,q) -Szász-Mirakjan Operators , 2015, 1512.03731.

[15]  Ali Aral,et al.  Bleimann, Butzer, and Hahn Operators Based on the-Integers , 2007 .

[16]  A. Aral,et al.  On Kantorovich Modification of (p, q)-Bernstein Operators , 2018 .

[17]  V. Mishra,et al.  On $$({\varvec{p,q}})$$(p,q) Baskakov–Durrmeyer–Stancu Operators , 2017 .

[18]  M. Mursaleen,et al.  On \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}(p,q)-Szász-Mirakyan operators and their approxi , 2017, Journal of inequalities and applications.

[19]  V. Totik Uniform approximation by Bernstein-type operators , 1984 .

[20]  Mohammad Mursaleen,et al.  Some approximation results by (p, q)-analogue of Bernstein-Stancu operators , 2015, Appl. Math. Comput..

[21]  Mahouton Norbert Hounkonnou,et al.  R(p,q)-calculus: differentiation and integration , 2013, SUT Journal of Mathematics.

[22]  M. Mursaleen,et al.  Modified (p,q)-Bernstein-Schurer operators and their approximation properties , 2016 .

[23]  Khalid Khan,et al.  Bèzier curves based on Lupaş (p, q)-analogue of Bernstein functions in CAGD , 2017, J. Comput. Appl. Math..

[24]  Vivek Sahai,et al.  Representations of two parameter quantum algebras and p,q-special functions , 2007 .

[25]  S. A. Mohiuddine,et al.  Approximation by Bivariate (p, q)-Bernstein–Kantorovich Operators , 2018 .

[26]  V. Mishra,et al.  On (p, q) Baskakov-Durrmeyer-Stancu Operators , 2016, 1602.06719.

[27]  Ramaswamy Jagannathan,et al.  A (p, q)-oscillator realization of two-parameter quantum algebras , 1991 .

[29]  George M. Phillips,et al.  A generalization of the Bernstein polynomials based on the q-integers , 2000, The ANZIAM Journal.