Generalized (p,q)$(p,q)$-Bleimann-Butzer-Hahn operators and some approximation results
暂无分享,去创建一个
M Mursaleen | Abdullah Alotaibi | M. Mursaleen | A. Alotaibi | Md Nasiruzzaman | Khursheed J Ansari | M. Nasiruzzaman | K. Ansari
[1] Md. Nasiruzzaman,et al. Some approximation results on Bernstein-Schurer operators defined by (p,q)$(p,q)$-integers , 2015 .
[2] S. A. Mohiuddine,et al. On Kantorovich modification of (p,q)$( p,q ) $-Baskakov operators , 2016 .
[3] Vishnu Narayan Mishra,et al. Chlodowsky type generalization of (p, q)-Szász operators involving Brenke type polynomials , 2018 .
[4] Faisal Khan,et al. Approximation by (p, q)-Lorentz Polynomials on a Compact Disk , 2015, 1504.05093.
[5] Ioan Rasa,et al. Bernstein-type operators which preserve polynomials , 2011, Comput. Math. Appl..
[6] P. Njionou Sadjang,et al. On the fundamental theorem of $(p,q)$-calculus and some $(p,q)$-Taylor formulas , 2013, 1309.3934.
[7] Octavian Agratini,et al. On a generalization of Bleimann, Butzer and Hahn operators based on q-integers , 2011, Math. Comput. Model..
[8] Khursheed J. Ansari,et al. Some approximation results on Bleimann-Butzer-Hahn operators defined by (p,q)-integers , 2015, 1505.00392.
[9] P. L. Butzer,et al. A Bernstein-type operator approximating continuous functions on the semi-axis , 1980 .
[10] M. Mursaleen,et al. Some approximation results on Bernstein-Schurer operators defined by (p,q)-integers (Revised) , 2015 .
[11] Vishnu Narayan Mishra,et al. Approximation properties of Chlodowsky variant of (p,q)$(p,q)$ Bernstein-Stancu-Schurer operators , 2017, Journal of inequalities and applications.
[12] Mohammad Mursaleen,et al. On (p, q)-analogue of Bernstein operators , 2015, Appl. Math. Comput..
[13] Dilek Söylemez. On -Bleimann, Butzer, and Hahn-Type Operators , 2015 .
[14] Khursheed J. Ansari,et al. On a Kantorovich Variant of (p,q) -Szász-Mirakjan Operators , 2015, 1512.03731.
[15] Ali Aral,et al. Bleimann, Butzer, and Hahn Operators Based on the-Integers , 2007 .
[16] A. Aral,et al. On Kantorovich Modification of (p, q)-Bernstein Operators , 2018 .
[17] V. Mishra,et al. On $$({\varvec{p,q}})$$(p,q) Baskakov–Durrmeyer–Stancu Operators , 2017 .
[18] M. Mursaleen,et al. On \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}(p,q)-Szász-Mirakyan operators and their approxi , 2017, Journal of inequalities and applications.
[19] V. Totik. Uniform approximation by Bernstein-type operators , 1984 .
[20] Mohammad Mursaleen,et al. Some approximation results by (p, q)-analogue of Bernstein-Stancu operators , 2015, Appl. Math. Comput..
[21] Mahouton Norbert Hounkonnou,et al. R(p,q)-calculus: differentiation and integration , 2013, SUT Journal of Mathematics.
[22] M. Mursaleen,et al. Modified (p,q)-Bernstein-Schurer operators and their approximation properties , 2016 .
[23] Khalid Khan,et al. Bèzier curves based on Lupaş (p, q)-analogue of Bernstein functions in CAGD , 2017, J. Comput. Appl. Math..
[24] Vivek Sahai,et al. Representations of two parameter quantum algebras and p,q-special functions , 2007 .
[25] S. A. Mohiuddine,et al. Approximation by Bivariate (p, q)-Bernstein–Kantorovich Operators , 2018 .
[26] V. Mishra,et al. On (p, q) Baskakov-Durrmeyer-Stancu Operators , 2016, 1602.06719.
[27] Ramaswamy Jagannathan,et al. A (p, q)-oscillator realization of two-parameter quantum algebras , 1991 .
[29] George M. Phillips,et al. A generalization of the Bernstein polynomials based on the q-integers , 2000, The ANZIAM Journal.